BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

367 related articles for article (PubMed ID: 33068438)

  • 1. Sperm histone H3 lysine 4 trimethylation is altered in a genetic mouse model of transgenerational epigenetic inheritance.
    Lismer A; Siklenka K; Lafleur C; Dumeaux V; Kimmins S
    Nucleic Acids Res; 2020 Nov; 48(20):11380-11393. PubMed ID: 33068438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sperm histone H3 lysine 4 tri-methylation serves as a metabolic sensor of paternal obesity and is associated with the inheritance of metabolic dysfunction.
    Pepin AS; Lafleur C; Lambrot R; Dumeaux V; Kimmins S
    Mol Metab; 2022 May; 59():101463. PubMed ID: 35183795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disruption of histone methylation in developing sperm impairs offspring health transgenerationally.
    Siklenka K; Erkek S; Godmann M; Lambrot R; McGraw S; Lafleur C; Cohen T; Xia J; Suderman M; Hallett M; Trasler J; Peters AH; Kimmins S
    Science; 2015 Nov; 350(6261):aab2006. PubMed ID: 26449473
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Whole-genome sequencing of H3K4me3 and DNA methylation in human sperm reveals regions of overlap linked to fertility and development.
    Lambrot R; Chan D; Shao X; Aarabi M; Kwan T; Bourque G; Moskovtsev S; Librach C; Trasler J; Dumeaux V; Kimmins S
    Cell Rep; 2021 Jul; 36(3):109418. PubMed ID: 34289352
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chromatin alterations during the epididymal maturation of mouse sperm refine the paternally inherited epigenome.
    Bedi YS; Roach AN; Thomas KN; Mehta NA; Golding MC
    Epigenetics Chromatin; 2022 Jan; 15(1):2. PubMed ID: 34991687
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Histone H3 lysine 4 trimethylation in sperm is transmitted to the embryo and associated with diet-induced phenotypes in the offspring.
    Lismer A; Dumeaux V; Lafleur C; Lambrot R; Brind'Amour J; Lorincz MC; Kimmins S
    Dev Cell; 2021 Mar; 56(5):671-686.e6. PubMed ID: 33596408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developmental origins of transgenerational sperm histone retention following ancestral exposures.
    Ben Maamar M; Beck D; Nilsson E; McCarrey JR; Skinner MK
    Dev Biol; 2020 Sep; 465(1):31-45. PubMed ID: 32628935
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epigenetic Transgenerational Inheritance of Altered Sperm Histone Retention Sites.
    Ben Maamar M; Sadler-Riggleman I; Beck D; Skinner MK
    Sci Rep; 2018 Mar; 8(1):5308. PubMed ID: 29593303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distinct features of H3K4me3 and H3K27me3 chromatin domains in pre-implantation embryos.
    Liu X; Wang C; Liu W; Li J; Li C; Kou X; Chen J; Zhao Y; Gao H; Wang H; Zhang Y; Gao Y; Gao S
    Nature; 2016 Sep; 537(7621):558-562. PubMed ID: 27626379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The genomic distribution of histone H3K4me2 in spermatogonia is highly conserved in sperm†.
    Lambrot R; Siklenka K; Lafleur C; Kimmins S
    Biol Reprod; 2019 Jun; 100(6):1661-1672. PubMed ID: 30951591
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Allelic reprogramming of the histone modification H3K4me3 in early mammalian development.
    Zhang B; Zheng H; Huang B; Li W; Xiang Y; Peng X; Ming J; Wu X; Zhang Y; Xu Q; Liu W; Kou X; Zhao Y; He W; Li C; Chen B; Li Y; Wang Q; Ma J; Yin Q; Kee K; Meng A; Gao S; Xu F; Na J; Xie W
    Nature; 2016 Sep; 537(7621):553-557. PubMed ID: 27626382
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hypoxia increases genome-wide bivalent epigenetic marking by specific gain of H3K27me3.
    Prickaerts P; Adriaens ME; Beucken TVD; Koch E; Dubois L; Dahlmans VEH; Gits C; Evelo CTA; Chan-Seng-Yue M; Wouters BG; Voncken JW
    Epigenetics Chromatin; 2016; 9():46. PubMed ID: 27800026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transgenerational epigenetic inheritance of longevity in Caenorhabditis elegans.
    Greer EL; Maures TJ; Ucar D; Hauswirth AG; Mancini E; Lim JP; Benayoun BA; Shi Y; Brunet A
    Nature; 2011 Oct; 479(7373):365-71. PubMed ID: 22012258
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transgenerational sperm DNA methylation epimutation developmental origins following ancestral vinclozolin exposure.
    Skinner MK; Nilsson E; Sadler-Riggleman I; Beck D; Ben Maamar M; McCarrey JR
    Epigenetics; 2019 Jul; 14(7):721-739. PubMed ID: 31079544
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resetting Epigenetic Memory by Reprogramming of Histone Modifications in Mammals.
    Zheng H; Huang B; Zhang B; Xiang Y; Du Z; Xu Q; Li Y; Wang Q; Ma J; Peng X; Xu F; Xie W
    Mol Cell; 2016 Sep; 63(6):1066-79. PubMed ID: 27635762
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeted reprogramming of H3K27me3 resets epigenetic memory in plant paternal chromatin.
    Borg M; Jacob Y; Susaki D; LeBlanc C; Buendía D; Axelsson E; Kawashima T; Voigt P; Boavida L; Becker J; Higashiyama T; Martienssen R; Berger F
    Nat Cell Biol; 2020 Jun; 22(6):621-629. PubMed ID: 32393884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupling of T cell receptor specificity to natural killer T cell development by bivalent histone H3 methylation.
    Dobenecker MW; Kim JK; Marcello J; Fang TC; Prinjha R; Bosselut R; Tarakhovsky A
    J Exp Med; 2015 Mar; 212(3):297-306. PubMed ID: 25687282
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-wide mapping of histone H3 lysine 4 trimethylation in Eucalyptus grandis developing xylem.
    Hussey SG; Mizrachi E; Groover A; Berger DK; Myburg AA
    BMC Plant Biol; 2015 May; 15():117. PubMed ID: 25957781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide analysis identifies changes in histone retention and epigenetic modifications at developmental and imprinted gene loci in the sperm of infertile men.
    Hammoud SS; Nix DA; Hammoud AO; Gibson M; Cairns BR; Carrell DT
    Hum Reprod; 2011 Sep; 26(9):2558-69. PubMed ID: 21685136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. KDM6A/UTX promotes spermatogenic gene expression across generations and is not required for male fertility†.
    Walters BW; Rainsford SR; Heuer RA; Dias N; Huang X; de Rooij D; Lesch BJ
    Biol Reprod; 2024 Feb; 110(2):391-407. PubMed ID: 37861693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.