BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 33068690)

  • 1. Generating High-Quality Lymph Node Clinical Target Volumes for Head and Neck Cancer Radiation Therapy Using a Fully Automated Deep Learning-Based Approach.
    Cardenas CE; Beadle BM; Garden AS; Skinner HD; Yang J; Rhee DJ; McCarroll RE; Netherton TJ; Gay SS; Zhang L; Court LE
    Int J Radiat Oncol Biol Phys; 2021 Mar; 109(3):801-812. PubMed ID: 33068690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Implementation of deep learning-based auto-segmentation for radiotherapy planning structures: a workflow study at two cancer centers.
    Wong J; Huang V; Wells D; Giambattista J; Giambattista J; Kolbeck C; Otto K; Saibishkumar EP; Alexander A
    Radiat Oncol; 2021 Jun; 16(1):101. PubMed ID: 34103062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clinical acceptability of automatically generated lymph node levels and structures of deglutition and mastication for head and neck radiation therapy.
    Maroongroge S; Mohamed AS; Nguyen C; Guma De la Vega J; Frank SJ; Garden AS; Gunn BG; Lee A; Mayo L; Moreno A; Morrison WH; Phan J; Spiotto MT; Court LE; Fuller CD; Rosenthal DI; Netherton TJ
    Phys Imaging Radiat Oncol; 2024 Jan; 29():100540. PubMed ID: 38356692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep learning for elective neck delineation: More consistent and time efficient.
    van der Veen J; Willems S; Bollen H; Maes F; Nuyts S
    Radiother Oncol; 2020 Dec; 153():180-188. PubMed ID: 33065182
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deformable image registration based automatic CT-to-CT contour propagation for head and neck adaptive radiotherapy in the routine clinical setting.
    Kumarasiri A; Siddiqui F; Liu C; Yechieli R; Shah M; Pradhan D; Zhong H; Chetty IJ; Kim J
    Med Phys; 2014 Dec; 41(12):121712. PubMed ID: 25471959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clinical feasibility of deep learning-based auto-segmentation of target volumes and organs-at-risk in breast cancer patients after breast-conserving surgery.
    Chung SY; Chang JS; Choi MS; Chang Y; Choi BS; Chun J; Keum KC; Kim JS; Kim YB
    Radiat Oncol; 2021 Feb; 16(1):44. PubMed ID: 33632248
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of autosegmentation techniques on T2-weighted MRI for off-line dose reconstruction in MR-linac workflow for head and neck cancers.
    McDonald BA; Cardenas CE; O'Connell N; Ahmed S; Naser MA; Wahid KA; Xu J; Thill D; Zuhour RJ; Mesko S; Augustyn A; Buszek SM; Grant S; Chapman BV; Bagley AF; He R; Mohamed ASR; Christodouleas J; Brock KK; Fuller CD
    Med Phys; 2024 Jan; 51(1):278-291. PubMed ID: 37475466
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gross tumor volume segmentation for head and neck cancer radiotherapy using deep dense multi-modality network.
    Guo Z; Guo N; Gong K; Zhong S; Li Q
    Phys Med Biol; 2019 Oct; 64(20):205015. PubMed ID: 31514173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prospective feasibility trial of radiotherapy target definition for head and neck cancer using 3-dimensional PET and CT imaging.
    Scarfone C; Lavely WC; Cmelak AJ; Delbeke D; Martin WH; Billheimer D; Hallahan DE
    J Nucl Med; 2004 Apr; 45(4):543-52. PubMed ID: 15073248
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clinical evaluation of deep learning-based automatic clinical target volume segmentation: a single-institution multi-site tumor experience.
    Hou Z; Gao S; Liu J; Yin Y; Zhang L; Han Y; Yan J; Li S
    Radiol Med; 2023 Oct; 128(10):1250-1261. PubMed ID: 37597126
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Retrospective Validation and Clinical Implementation of Automated Contouring of Organs at Risk in the Head and Neck: A Step Toward Automated Radiation Treatment Planning for Low- and Middle-Income Countries.
    McCarroll RE; Beadle BM; Balter PA; Burger H; Cardenas CE; Dalvie S; Followill DS; Kisling KD; Mejia M; Naidoo K; Nelson CL; Peterson CB; Vorster K; Wetter J; Zhang L; Court LE; Yang J
    J Glob Oncol; 2018 Jul; 4():1-11. PubMed ID: 30110221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. AnatomyNet: Deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy.
    Zhu W; Huang Y; Zeng L; Chen X; Liu Y; Qian Z; Du N; Fan W; Xie X
    Med Phys; 2019 Feb; 46(2):576-589. PubMed ID: 30480818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of Deep Learning to Augment Image-Guided Radiotherapy for Head and Neck and Prostate Cancers.
    Oktay O; Nanavati J; Schwaighofer A; Carter D; Bristow M; Tanno R; Jena R; Barnett G; Noble D; Rimmer Y; Glocker B; O'Hara K; Bishop C; Alvarez-Valle J; Nori A
    JAMA Netw Open; 2020 Nov; 3(11):e2027426. PubMed ID: 33252691
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Are neck nodal volumes drawn on CT slices covered by standard three-field technique?
    Sanguineti G; Culp LR; Endres EJ; Bayouth JE
    Int J Radiat Oncol Biol Phys; 2004 Jul; 59(3):725-42. PubMed ID: 15183476
    [TBL] [Abstract][Full Text] [Related]  

  • 15. General and custom deep learning autosegmentation models for organs in head and neck, abdomen, and male pelvis.
    Amjad A; Xu J; Thill D; Lawton C; Hall W; Awan MJ; Shukla M; Erickson BA; Li XA
    Med Phys; 2022 Mar; 49(3):1686-1700. PubMed ID: 35094390
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prospective Qualitative and Quantitative Analysis of Real-Time Peer Review Quality Assurance Rounds Incorporating Direct Physical Examination for Head and Neck Cancer Radiation Therapy.
    Cardenas CE; Mohamed ASR; Tao R; Wong AJR; Awan MJ; Kuruvila S; Aristophanous M; Gunn GB; Phan J; Beadle BM; Frank SJ; Garden AS; Morrison WH; Fuller CD; Rosenthal DI
    Int J Radiat Oncol Biol Phys; 2017 Jul; 98(3):532-540. PubMed ID: 28258898
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comprehensive Quantitative Evaluation of Variability in Magnetic Resonance-Guided Delineation of Oropharyngeal Gross Tumor Volumes and High-Risk Clinical Target Volumes: An R-IDEAL Stage 0 Prospective Study.
    Cardenas CE; Blinde SE; Mohamed ASR; Ng SP; Raaijmakers C; Philippens M; Kotte A; Al-Mamgani AA; Karam I; Thomson DJ; Robbins J; Newbold K; Fuller CD; Terhaard C
    Int J Radiat Oncol Biol Phys; 2022 Jun; 113(2):426-436. PubMed ID: 35124134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A gradient mapping guided explainable deep neural network for extracapsular extension identification in 3D head and neck cancer computed tomography images.
    Wang Y; Rahman A; Duggar WN; Thomas TV; Roberts PR; Vijayakumar S; Jiao Z; Bian L; Wang H
    Med Phys; 2024 Mar; 51(3):2007-2019. PubMed ID: 37643447
    [TBL] [Abstract][Full Text] [Related]  

  • 19. U-net architecture with embedded Inception-ResNet-v2 image encoding modules for automatic segmentation of organs-at-risk in head and neck cancer radiation therapy based on computed tomography scans.
    Siciarz P; McCurdy B
    Phys Med Biol; 2022 Jun; 67(11):. PubMed ID: 35134792
    [No Abstract]   [Full Text] [Related]  

  • 20. Clinical target volume segmentation based on gross tumor volume using deep learning for head and neck cancer treatment.
    Kihara S; Koike Y; Takegawa H; Anetai Y; Nakamura S; Tanigawa N; Koizumi M
    Med Dosim; 2023 Spring; 48(1):20-24. PubMed ID: 36273950
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.