These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
322 related articles for article (PubMed ID: 33068807)
1. A comprehensive diagnosis system for early signs and different diabetic retinopathy grades using fundus retinal images based on pathological changes detection. AbdelMaksoud E; Barakat S; Elmogy M Comput Biol Med; 2020 Nov; 126():104039. PubMed ID: 33068807 [TBL] [Abstract][Full Text] [Related]
2. Segmentation of retinal blood vessels by a novel hybrid technique- Principal Component Analysis (PCA) and Contrast Limited Adaptive Histogram Equalization (CLAHE). Sidhu RK; Sachdeva J; Katoch D Microvasc Res; 2023 Jul; 148():104477. PubMed ID: 36746364 [TBL] [Abstract][Full Text] [Related]
3. Retinal images benchmark for the detection of diabetic retinopathy and clinically significant macular edema (CSME). Noor-Ul-Huda M; Tehsin S; Ahmed S; Niazi FAK; Murtaza Z Biomed Tech (Berl); 2019 May; 64(3):297-307. PubMed ID: 30055096 [TBL] [Abstract][Full Text] [Related]
4. Early diabetic retinopathy diagnosis based on local retinal blood vessel analysis in optical coherence tomography angiography (OCTA) images. Eladawi N; Elmogy M; Khalifa F; Ghazal M; Ghazi N; Aboelfetouh A; Riad A; Sandhu H; Schaal S; El-Baz A Med Phys; 2018 Oct; 45(10):4582-4599. PubMed ID: 30144102 [TBL] [Abstract][Full Text] [Related]
5. Detection of retinal lesions in diabetic retinopathy: comparative evaluation of 7-field digital color photography versus red-free photography. Venkatesh P; Sharma R; Vashist N; Vohra R; Garg S Int Ophthalmol; 2015 Oct; 35(5):635-40. PubMed ID: 22961609 [TBL] [Abstract][Full Text] [Related]
6. Detection of Hard Exudates in Colour Fundus Images Using Fuzzy Support Vector Machine-Based Expert System. Jaya T; Dheeba J; Singh NA J Digit Imaging; 2015 Dec; 28(6):761-8. PubMed ID: 25822397 [TBL] [Abstract][Full Text] [Related]
7. Multi-label classification of fundus images based on graph convolutional network. Cheng Y; Ma M; Li X; Zhou Y BMC Med Inform Decis Mak; 2021 Jul; 21(Suppl 2):82. PubMed ID: 34330270 [TBL] [Abstract][Full Text] [Related]
8. Distinguising Proof of Diabetic Retinopathy Detection by Hybrid Approaches in Two Dimensional Retinal Fundus Images. S K; D M J Med Syst; 2019 May; 43(6):173. PubMed ID: 31069550 [TBL] [Abstract][Full Text] [Related]
9. Fast and Robust Exudate Detection in Retinal Fundus Images Using Extreme Learning Machine Autoencoders and Modified KAZE Features. Mohan NJ; Murugan R; Goel T; Roy P J Digit Imaging; 2022 Jun; 35(3):496-513. PubMed ID: 35141807 [TBL] [Abstract][Full Text] [Related]
10. Secondary Observer System for Detection of Microaneurysms in Fundus Images Using Texture Descriptors. Derwin DJ; Selvi ST; Singh OJ J Digit Imaging; 2020 Feb; 33(1):159-167. PubMed ID: 31144148 [TBL] [Abstract][Full Text] [Related]
12. A computer-aided diagnosis system for detecting various diabetic retinopathy grades based on a hybrid deep learning technique. AbdelMaksoud E; Barakat S; Elmogy M Med Biol Eng Comput; 2022 Jul; 60(7):2015-2038. PubMed ID: 35545738 [TBL] [Abstract][Full Text] [Related]
13. Automated detection of exudates in colored retinal images for diagnosis of diabetic retinopathy. Akram MU; Tariq A; Anjum MA; Javed MY Appl Opt; 2012 Jul; 51(20):4858-66. PubMed ID: 22781265 [TBL] [Abstract][Full Text] [Related]
14. Effective Fundus Image Decomposition for the Detection of Red Lesions and Hard Exudates to Aid in the Diagnosis of Diabetic Retinopathy. Romero-Oraá R; García M; Oraá-Pérez J; López-Gálvez MI; Hornero R Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33207825 [TBL] [Abstract][Full Text] [Related]
15. Assessment of diabetic retinopathy using two ultra-wide-field fundus imaging systems, the Clarus® and Optos™ systems. Hirano T; Imai A; Kasamatsu H; Kakihara S; Toriyama Y; Murata T BMC Ophthalmol; 2018 Dec; 18(1):332. PubMed ID: 30572870 [TBL] [Abstract][Full Text] [Related]
16. Detection of Hard Exudates Using Evolutionary Feature Selection in Retinal Fundus Images. Kadan AB; Subbian PS J Med Syst; 2019 May; 43(7):209. PubMed ID: 31144041 [TBL] [Abstract][Full Text] [Related]
17. Diabetic retinopathy techniques in retinal images: A review. Salamat N; Missen MMS; Rashid A Artif Intell Med; 2019 Jun; 97():168-188. PubMed ID: 30448367 [TBL] [Abstract][Full Text] [Related]
18. Retinal image analysis for disease screening through local tetra patterns. Porwal P; Pachade S; Kokare M; Giancardo L; Mériaudeau F Comput Biol Med; 2018 Nov; 102():200-210. PubMed ID: 30308336 [TBL] [Abstract][Full Text] [Related]
19. A Machine Learning Ensemble Classifier for Early Prediction of Diabetic Retinopathy. S K S; P A J Med Syst; 2017 Nov; 41(12):201. PubMed ID: 29124453 [TBL] [Abstract][Full Text] [Related]
20. An Automated System for the Detection and Classification of Retinal Changes Due to Red Lesions in Longitudinal Fundus Images. Adal KM; van Etten PG; Martinez JP; Rouwen KW; Vermeer KA; van Vliet LJ IEEE Trans Biomed Eng; 2018 Jun; 65(6):1382-1390. PubMed ID: 28922110 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]