These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
322 related articles for article (PubMed ID: 33068807)
21. Fundus images analysis using deep features for detection of exudates, hemorrhages and microaneurysms. Khojasteh P; Aliahmad B; Kumar DK BMC Ophthalmol; 2018 Nov; 18(1):288. PubMed ID: 30400869 [TBL] [Abstract][Full Text] [Related]
22. A tool for automated diabetic retinopathy pre-screening based on retinal image computer analysis. Gegundez-Arias ME; Marin D; Ponte B; Alvarez F; Garrido J; Ortega C; Vasallo MJ; Bravo JM Comput Biol Med; 2017 Sep; 88():100-109. PubMed ID: 28711766 [TBL] [Abstract][Full Text] [Related]
23. Deep learning based computer-aided diagnosis systems for diabetic retinopathy: A survey. Asiri N; Hussain M; Al Adel F; Alzaidi N Artif Intell Med; 2019 Aug; 99():101701. PubMed ID: 31606116 [TBL] [Abstract][Full Text] [Related]
24. Retinal fundus image classification for diabetic retinopathy using SVM predictions. Hardas M; Mathur S; Bhaskar A; Kalla M Phys Eng Sci Med; 2022 Sep; 45(3):781-791. PubMed ID: 35678993 [TBL] [Abstract][Full Text] [Related]
25. Red lesion detection in retinal fundus images using Frangi-based filters. Srivastava R; Wong DW; Lixin Duan ; Jiang Liu ; Tien Yin Wong Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():5663-6. PubMed ID: 26737577 [TBL] [Abstract][Full Text] [Related]
26. Convexity shape constraints for retinal blood vessel segmentation and foveal avascular zone detection. Escorcia-Gutierrez J; Torrents-Barrena J; Gamarra M; Romero-Aroca P; Valls A; Puig D Comput Biol Med; 2020 Dec; 127():104049. PubMed ID: 33099218 [TBL] [Abstract][Full Text] [Related]
27. Algorithms for the automated detection of diabetic retinopathy using digital fundus images: a review. Faust O; Acharya U R; Ng EY; Ng KH; Suri JS J Med Syst; 2012 Feb; 36(1):145-57. PubMed ID: 20703740 [TBL] [Abstract][Full Text] [Related]
28. Automated screening system for retinal health using bi-dimensional empirical mode decomposition and integrated index. Acharya UR; Mookiah MR; Koh JE; Tan JH; Bhandary SV; Rao AK; Fujita H; Hagiwara Y; Chua CK; Laude A Comput Biol Med; 2016 Aug; 75():54-62. PubMed ID: 27253617 [TBL] [Abstract][Full Text] [Related]
29. Automatic Detection of Hard Exudates in Color Retinal Images Using Dynamic Threshold and SVM Classification: Algorithm Development and Evaluation. Long S; Huang X; Chen Z; Pardhan S; Zheng D Biomed Res Int; 2019; 2019():3926930. PubMed ID: 30809539 [TBL] [Abstract][Full Text] [Related]
30. Feature extraction and selection for the automatic detection of hard exudates in retinal images. Garcia M; Hornero R; Sánchez CI; López MI; Diez A Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():4969-72. PubMed ID: 18003122 [TBL] [Abstract][Full Text] [Related]
31. Automated detection of diabetic retinopathy in fundus images using fused features. Bibi I; Mir J; Raja G Phys Eng Sci Med; 2020 Dec; 43(4):1253-1264. PubMed ID: 32955686 [TBL] [Abstract][Full Text] [Related]
32. A computer-aided diagnostic system for detecting diabetic retinopathy in optical coherence tomography images. ElTanboly A; Ismail M; Shalaby A; Switala A; El-Baz A; Schaal S; Gimel'farb G; El-Azab M Med Phys; 2017 Mar; 44(3):914-923. PubMed ID: 28035657 [TBL] [Abstract][Full Text] [Related]
33. Decision Support System for Detection of Papilledema through Fundus Retinal Images. Akbar S; Akram MU; Sharif M; Tariq A; Yasin UU J Med Syst; 2017 Apr; 41(4):66. PubMed ID: 28283997 [TBL] [Abstract][Full Text] [Related]
34. Microaneurysms detection in color fundus images using machine learning based on directional local contrast. Long S; Chen J; Hu A; Liu H; Chen Z; Zheng D Biomed Eng Online; 2020 Apr; 19(1):21. PubMed ID: 32295576 [TBL] [Abstract][Full Text] [Related]
35. An ensemble classification of exudates in color fundus images using an evolutionary algorithm based optimal features selection. Ullah H; Saba T; Islam N; Abbas N; Rehman A; Mehmood Z; Anjum A Microsc Res Tech; 2019 Apr; 82(4):361-372. PubMed ID: 30677193 [TBL] [Abstract][Full Text] [Related]
36. Deep image mining for diabetic retinopathy screening. Quellec G; Charrière K; Boudi Y; Cochener B; Lamard M Med Image Anal; 2017 Jul; 39():178-193. PubMed ID: 28511066 [TBL] [Abstract][Full Text] [Related]
37. Automatic detection of microaneurysms in retinal fundus images. Wu B; Zhu W; Shi F; Zhu S; Chen X Comput Med Imaging Graph; 2017 Jan; 55():106-112. PubMed ID: 27595214 [TBL] [Abstract][Full Text] [Related]
38. Detection of hard exudates in retinal images using a radial basis function classifier. García M; Sánchez CI; Poza J; López MI; Hornero R Ann Biomed Eng; 2009 Jul; 37(7):1448-63. PubMed ID: 19430906 [TBL] [Abstract][Full Text] [Related]
39. Construction of benchmark retinal image database for diabetic retinopathy analysis. Kaur J; Mittal D Proc Inst Mech Eng H; 2020 Sep; 234(9):1036-1048. PubMed ID: 32605477 [TBL] [Abstract][Full Text] [Related]
40. Detection of microaneurysms using ant colony algorithm in the early diagnosis of diabetic retinopathy. Selçuk T; Alkan A Med Hypotheses; 2019 Aug; 129():109242. PubMed ID: 31371092 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]