These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 33068895)
1. Evaluation of black tea by using smartphone imaging coupled with micro-near-infrared spectrometer. Li L; Wang Y; Jin S; Li M; Chen Q; Ning J; Zhang Z Spectrochim Acta A Mol Biomol Spectrosc; 2021 Feb; 246():118991. PubMed ID: 33068895 [TBL] [Abstract][Full Text] [Related]
2. Rapid and real-time detection of black tea fermentation quality by using an inexpensive data fusion system. Jin G; Wang YJ; Li M; Li T; Huang WJ; Li L; Deng WW; Ning J Food Chem; 2021 Oct; 358():129815. PubMed ID: 33915424 [TBL] [Abstract][Full Text] [Related]
3. Micro-NIR spectrometer for quality assessment of tea: Comparison of local and global models. Wang YJ; Li TH; Li LQ; Ning JM; Zhang ZZ Spectrochim Acta A Mol Biomol Spectrosc; 2020 Aug; 237():118403. PubMed ID: 32361319 [TBL] [Abstract][Full Text] [Related]
4. Highly identification of keemun black tea rank based on cognitive spectroscopy: Near infrared spectroscopy combined with feature variable selection. Ren G; Wang Y; Ning J; Zhang Z Spectrochim Acta A Mol Biomol Spectrosc; 2020 Apr; 230():118079. PubMed ID: 31982655 [TBL] [Abstract][Full Text] [Related]
5. Cognitive spectroscopy for evaluating Chinese black tea grades (Camellia sinensis): near-infrared spectroscopy and evolutionary algorithms. Ren G; Sun Y; Li M; Ning J; Zhang Z J Sci Food Agric; 2020 Aug; 100(10):3950-3959. PubMed ID: 32329077 [TBL] [Abstract][Full Text] [Related]
6. Multi-variable selection strategy based on near-infrared spectra for the rapid description of dianhong black tea quality. Ren G; Ning J; Zhang Z Spectrochim Acta A Mol Biomol Spectrosc; 2021 Jan; 245():118918. PubMed ID: 32942112 [TBL] [Abstract][Full Text] [Related]
7. [Rapid and Dynamic Determination Models of Amino Acids and Catechins Concentrations during the Processing Procedures of Keemun Black Tea]. Ning JM; Yan L; Zhang ZZ; Wei LD; Li LQ; Fang JT; Huang CW Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Dec; 35(12):3422-6. PubMed ID: 26964222 [TBL] [Abstract][Full Text] [Related]
8. Quality evaluation of Keemun black tea by fusing data obtained from near-infrared reflectance spectroscopy and computer vision sensors. Song Y; Wang X; Xie H; Li L; Ning J; Zhang Z Spectrochim Acta A Mol Biomol Spectrosc; 2021 May; 252():119522. PubMed ID: 33582437 [TBL] [Abstract][Full Text] [Related]
9. Rapid and comprehensive grade evaluation of Keemun black tea using efficient multidimensional data fusion. Li L; Chen Y; Dong S; Shen J; Cao S; Cui Q; Song Y; Ning J Food Chem X; 2023 Dec; 20():100924. PubMed ID: 38144790 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of Dianhong black tea quality using near-infrared hyperspectral imaging technology. Ren G; Wang Y; Ning J; Zhang Z J Sci Food Agric; 2021 Mar; 101(5):2135-2142. PubMed ID: 32981110 [TBL] [Abstract][Full Text] [Related]
11. Potential of smartphone-coupled micro NIR spectroscopy for quality control of green tea. Li L; Jin S; Wang Y; Liu Y; Shen S; Li M; Ma Z; Ning J; Zhang Z Spectrochim Acta A Mol Biomol Spectrosc; 2021 Feb; 247():119096. PubMed ID: 33166782 [TBL] [Abstract][Full Text] [Related]
12. Monitoring green tea fixation quality by intelligent sensors: comparison of image and spectral information. Chen Y; Wu H; Liu Y; Wang Y; Lu C; Li T; Wei Y; Ning J J Sci Food Agric; 2023 Apr; 103(6):3093-3101. PubMed ID: 36418909 [TBL] [Abstract][Full Text] [Related]
13. pH indicator-based sensor array in combination with hyperspectral imaging for intelligent evaluation of withering degree during processing of black tea. Wang Y; Ren Z; Li M; Yuan W; Zhang Z; Ning J Spectrochim Acta A Mol Biomol Spectrosc; 2022 Apr; 271():120959. PubMed ID: 35121474 [TBL] [Abstract][Full Text] [Related]
14. Moisture content monitoring in withering leaves during black tea processing based on electronic eye and near infrared spectroscopy. Chen J; Yang C; Yuan C; Li Y; An T; Dong C Sci Rep; 2022 Dec; 12(1):20721. PubMed ID: 36456868 [TBL] [Abstract][Full Text] [Related]
15. Discrimination of nitrogen fertilizer levels of tea plant (Camellia sinensis) based on hyperspectral imaging. Wang Y; Hu X; Hou Z; Ning J; Zhang Z J Sci Food Agric; 2018 Sep; 98(12):4659-4664. PubMed ID: 29607500 [TBL] [Abstract][Full Text] [Related]
16. Color measurement of tea leaves at different drying periods using hyperspectral imaging technique. Xie C; Li X; Shao Y; He Y PLoS One; 2014; 9(12):e113422. PubMed ID: 25546335 [TBL] [Abstract][Full Text] [Related]
17. Green analytical assay for the quality assessment of tea by using pocket-sized NIR spectrometer. Wang Y; Li M; Li L; Ning J; Zhang Z Food Chem; 2021 May; 345():128816. PubMed ID: 33316713 [TBL] [Abstract][Full Text] [Related]
18. Rapid Identification of Different Grades of Huangshan Maofeng Tea Using Ultraviolet Spectrum and Color Difference. Huang D; Qiu Q; Wang Y; Wang Y; Lu Y; Fan D; Wang X Molecules; 2020 Oct; 25(20):. PubMed ID: 33066248 [TBL] [Abstract][Full Text] [Related]
19. Intelligent evaluation of color sensory quality of black tea by visible-near infrared spectroscopy technology: A comparison of spectra and color data information. Ouyang Q; Liu Y; Chen Q; Zhang Z; Zhao J; Guo Z; Gu H Spectrochim Acta A Mol Biomol Spectrosc; 2017 Jun; 180():91-96. PubMed ID: 28279828 [TBL] [Abstract][Full Text] [Related]
20. Rapid Characterization of Black Tea Taste Quality Using Miniature NIR Spectroscopy and Electronic Tongue Sensors. Ren G; Zhang X; Wu R; Yin L; Hu W; Zhang Z Biosensors (Basel); 2023 Jan; 13(1):. PubMed ID: 36671927 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]