BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 33068897)

  • 1. Fluorescence copolymer-based dual-signal monitoring tyrosinase activity and its inhibitor screening via blue-green emission transformation.
    Chen C; Pang L; Wang R; Zou C; Ruan G; Sun Y; Zhang C; Yu H; Li L; Liu J
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Feb; 246():119028. PubMed ID: 33068897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Blue and green emission-transformed fluorescent copolymer: Specific detection of levodopa of anti-Parkinson drug in human serum.
    Chen C; Zou C; Li L; Yu H; Zhu J; Liu J; Huang W
    Talanta; 2020 Jul; 214():120817. PubMed ID: 32278428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3-Aminophenyl Boronic Acid Functionalized Quantum-Dot-Based Ratiometric Fluorescence Sensor for the Highly Sensitive Detection of Tyrosinase Activity.
    Wang M; Xie JL; Li J; Fan YY; Deng X; Duan HL; Zhang ZQ
    ACS Sens; 2020 Jun; 5(6):1634-1640. PubMed ID: 32486639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Melanosome-Targeting Near-Infrared Fluorescent Probe with Large Stokes Shift for in Situ Quantification of Tyrosinase Activity and Assessing Drug Effects on Differently Invasive Melanoma Cells.
    Peng M; Wang Y; Fu Q; Sun F; Na N; Ouyang J
    Anal Chem; 2018 May; 90(10):6206-6213. PubMed ID: 29696968
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functionalized Carbon Quantum Dots with Dopamine for Tyrosinase Activity Monitoring and Inhibitor Screening: In Vitro and Intracellular Investigation.
    Chai L; Zhou J; Feng H; Tang C; Huang Y; Qian Z
    ACS Appl Mater Interfaces; 2015 Oct; 7(42):23564-74. PubMed ID: 26440479
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A selective dual-response biosensor for tyrosinase monophenolase activity based on lanthanide metal-organic frameworks assisted boric acid-levodopa polymer dots.
    Yu L; Gao Z; Xu Q; Pan X; Xiao Y
    Biosens Bioelectron; 2022 Aug; 210():114320. PubMed ID: 35500310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A colorimetric and near -infrared ratiometric fluorescent probe for the determination of endogenous tyrosinase activity based on cyanine aggregation.
    Zhang P; Li S; Fu C; Zhang Q; Xiao Y; Ding C
    Analyst; 2019 Sep; 144(18):5472-5478. PubMed ID: 31384852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-Photon Semiconducting Polymer Dots with Dual-Emission for Ratiometric Fluorescent Sensing and Bioimaging of Tyrosinase Activity.
    Sun J; Mei H; Wang S; Gao F
    Anal Chem; 2016 Jul; 88(14):7372-7. PubMed ID: 27322725
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ratiometric fluorescence detection of tyrosinase activity and dopamine using thiolate-protected gold nanoclusters.
    Teng Y; Jia X; Li J; Wang E
    Anal Chem; 2015; 87(9):4897-902. PubMed ID: 25846058
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Melanin-Like Nanoquencher on Graphitic Carbon Nitride Nanosheets for Tyrosinase Activity and Inhibitor Assay.
    Liu JW; Wang YM; Xu L; Duan LY; Tang H; Yu RQ; Jiang JH
    Anal Chem; 2016 Sep; 88(17):8355-8. PubMed ID: 27417635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A turn-on fluorescence probe for imaging tyrosinase at the wound site in broken tail of zebrafish.
    Chen D; Ji Y; Sun S; Pu S
    Bioorg Chem; 2024 May; 146():107298. PubMed ID: 38503025
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Blue/NIR ratiometric fluorescent probe for intracellular detection of Tyrosinase and the inhibitor screening.
    Dai Q; Qi Z; Yan Z; Yu B; Li J; Ge B; He H; Huang F; Wang X
    Talanta; 2023 Mar; 254():124175. PubMed ID: 36527911
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visual and fluorescent detection of tyrosinase activity by using a dual-emission ratiometric fluorescence probe.
    Yan X; Li H; Zheng W; Su X
    Anal Chem; 2015 Sep; 87(17):8904-9. PubMed ID: 26249217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A fluorescence signal amplification strategy for modification-free ratiometric determination of tyrosinase in situ based on the use of dual-templated copper nanoclusters.
    Huang X; Zhao H; Qiu W; Wang J; Guo L; Lin Z; Pan W; Wu Y; Qiu B
    Mikrochim Acta; 2020 Mar; 187(4):240. PubMed ID: 32198661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemistry-Regulated Recyclable SERS Sensor for Sensitive and Selective Detection of Tyrosinase Activity.
    Wang L; Gan ZF; Guo D; Xia HL; Patrice FT; Hafez ME; Li DW
    Anal Chem; 2019 May; 91(10):6507-6513. PubMed ID: 30916930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A fluorescent sensor for detecting dopamine and tyrosinase activity by dual-emission carbon dots and gold nanoparticles.
    Qu F; Huang W; You J
    Colloids Surf B Biointerfaces; 2018 Feb; 162():212-219. PubMed ID: 29190472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of tyramine and tyrosinase activity using red region emission NaGdF
    Wang H; Lu Y; Wang L; Chen H
    Talanta; 2019 May; 197():558-566. PubMed ID: 30771976
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A highly selective naphthalimide-based ratiometric fluorescent probe for the recognition of tyrosinase and cellular imaging.
    Singh Sidhu J; Singh A; Garg N; Kaur N; Singh N
    Analyst; 2018 Sep; 143(18):4476-4483. PubMed ID: 30156587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A self-ratiometric and selective electrochemical sensor for the detection of tyrosinase in mouse brain homogenate.
    Xu Y; Hu B; Cui Y; Li L; Nian F; Zhang Z
    Analyst; 2022 Sep; 147(18):4092-4097. PubMed ID: 35942920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functionalized carbon quantum dots with dopamine for tyrosinase activity analysis.
    Hu JJ; Bai XL; Liu YM; Liao X
    Anal Chim Acta; 2017 Dec; 995():99-105. PubMed ID: 29126486
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.