These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
275 related articles for article (PubMed ID: 33068904)
21. A Knowledge-Based Machine Learning Approach to Gene Prioritisation in Amyotrophic Lateral Sclerosis. Bean DM; Al-Chalabi A; Dobson RJB; Iacoangeli A Genes (Basel); 2020 Jun; 11(6):. PubMed ID: 32575372 [TBL] [Abstract][Full Text] [Related]
22. [The role of lipids in the pathogenesis of lateral amyotrophic sclerosis]. Alessenko AV; Gutner UA; Nebogatikov VO; Shupik MA; Ustyugov AA Zh Nevrol Psikhiatr Im S S Korsakova; 2020; 120(10):108-117. PubMed ID: 33244966 [TBL] [Abstract][Full Text] [Related]
23. Clinical Spectrum of Amyotrophic Lateral Sclerosis (ALS). Grad LI; Rouleau GA; Ravits J; Cashman NR Cold Spring Harb Perspect Med; 2017 Aug; 7(8):. PubMed ID: 28003278 [TBL] [Abstract][Full Text] [Related]
24. Evolving markers in amyotrophic lateral sclerosis. Chen X; Zhou L; Cui C; Sun J Adv Clin Chem; 2023; 114():225-246. PubMed ID: 37268333 [TBL] [Abstract][Full Text] [Related]
25. Rapidly progressive amyotrophic lateral sclerosis is associated with microglial reactivity and small heat shock protein expression in reactive astrocytes. Gorter RP; Stephenson J; Nutma E; Anink J; de Jonge JC; Baron W; Jahreiβ MC; Belien JAM; van Noort JM; Mijnsbergen C; Aronica E; Amor S Neuropathol Appl Neurobiol; 2019 Aug; 45(5):459-475. PubMed ID: 30346063 [TBL] [Abstract][Full Text] [Related]
26. RNA as a source of biomarkers for amyotrophic lateral sclerosis. Kiaei L; Kiaei M Metab Brain Dis; 2022 Aug; 37(6):1697-1702. PubMed ID: 33905071 [TBL] [Abstract][Full Text] [Related]
27. The expression profile of matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) in lesions and normal appearing white matter of multiple sclerosis. Lindberg RL; De Groot CJ; Montagne L; Freitag P; van der Valk P; Kappos L; Leppert D Brain; 2001 Sep; 124(Pt 9):1743-53. PubMed ID: 11522577 [TBL] [Abstract][Full Text] [Related]
28. New insights into the gene expression associated to amyotrophic lateral sclerosis. Recabarren-Leiva D; Alarcón M Life Sci; 2018 Jan; 193():110-123. PubMed ID: 29241710 [TBL] [Abstract][Full Text] [Related]
29. Matrix metalloproteinases MMP-2, MMP-7 and MMP-9 in denervated human muscle. Schoser BG; Blottner D Neuroreport; 1999 Sep; 10(13):2795-7. PubMed ID: 10511442 [TBL] [Abstract][Full Text] [Related]
30. The Overexpression of TDP-43 Protein in the Neuron and Oligodendrocyte Cells Causes the Progressive Motor Neuron Degeneration in the SOD1 G93A Transgenic Mouse Model of Amyotrophic Lateral Sclerosis. Lu Y; Tang C; Zhu L; Li J; Liang H; Zhang J; Xu R Int J Biol Sci; 2016; 12(9):1140-9. PubMed ID: 27570488 [TBL] [Abstract][Full Text] [Related]
31. Rapamycin treatment augments motor neuron degeneration in SOD1(G93A) mouse model of amyotrophic lateral sclerosis. Zhang X; Li L; Chen S; Yang D; Wang Y; Zhang X; Wang Z; Le W Autophagy; 2011 Apr; 7(4):412-25. PubMed ID: 21193837 [TBL] [Abstract][Full Text] [Related]
32. MicroRNA Metabolism and Dysregulation in Amyotrophic Lateral Sclerosis. Rinchetti P; Rizzuti M; Faravelli I; Corti S Mol Neurobiol; 2018 Mar; 55(3):2617-2630. PubMed ID: 28421535 [TBL] [Abstract][Full Text] [Related]
33. Intact single muscle fibres from SOD1 Cheng AJ; Allodi I; Chaillou T; Schlittler M; Ivarsson N; Lanner JT; Thams S; Hedlund E; Andersson DC J Physiol; 2019 Jun; 597(12):3133-3146. PubMed ID: 31074054 [TBL] [Abstract][Full Text] [Related]
34. Loss of TDP-43 causes age-dependent progressive motor neuron degeneration. Iguchi Y; Katsuno M; Niwa J; Takagi S; Ishigaki S; Ikenaka K; Kawai K; Watanabe H; Yamanaka K; Takahashi R; Misawa H; Sasaki S; Tanaka F; Sobue G Brain; 2013 May; 136(Pt 5):1371-82. PubMed ID: 23449777 [TBL] [Abstract][Full Text] [Related]
35. Infectious agents and amyotrophic lateral sclerosis: another piece of the puzzle of motor neuron degeneration. Castanedo-Vazquez D; Bosque-Varela P; Sainz-Pelayo A; Riancho J J Neurol; 2019 Jan; 266(1):27-36. PubMed ID: 29845377 [TBL] [Abstract][Full Text] [Related]
36. Emerging understanding of the genotype-phenotype relationship in amyotrophic lateral sclerosis. Goutman SA; Chen KS; Paez-Colasante X; Feldman EL Handb Clin Neurol; 2018; 148():603-623. PubMed ID: 29478603 [TBL] [Abstract][Full Text] [Related]
37. Phenotypic variability and its pathological basis in amyotrophic lateral sclerosis. Takeda T; Kitagawa K; Arai K Neuropathology; 2020 Feb; 40(1):40-56. PubMed ID: 31802540 [TBL] [Abstract][Full Text] [Related]
38. The Biogenesis of miRNAs and Their Role in the Development of Amyotrophic Lateral Sclerosis. Liu J; Zhou F; Guan Y; Meng F; Zhao Z; Su Q; Bao W; Wang X; Zhao J; Huo Z; Zhang L; Zhou S; Chen Y; Wang X Cells; 2022 Feb; 11(3):. PubMed ID: 35159383 [TBL] [Abstract][Full Text] [Related]
39. Matrix metalloproteinase-9 regulates TNF-alpha and FasL expression in neuronal, glial cells and its absence extends life in a transgenic mouse model of amyotrophic lateral sclerosis. Kiaei M; Kipiani K; Calingasan NY; Wille E; Chen J; Heissig B; Rafii S; Lorenzl S; Beal MF Exp Neurol; 2007 May; 205(1):74-81. PubMed ID: 17362932 [TBL] [Abstract][Full Text] [Related]
40. [The role of sphingolipids in pathogenesis of amyotrophic lateral sclerosis]. Alessenko AV; Gutner UA; Nebogatikov VO; Shupik MA; Ustyugov AA Zh Nevrol Psikhiatr Im S S Korsakova; 2021; 121(8):131-140. PubMed ID: 34481449 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]