These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 33068991)

  • 41. A sodium salt-assisted roasting approach followed by leaching for recovering spent LiFePO
    Zhang B; Qu X; Chen X; Liu D; Zhao Z; Xie H; Wang D; Yin H
    J Hazard Mater; 2022 Feb; 424(Pt C):127586. PubMed ID: 34808449
    [TBL] [Abstract][Full Text] [Related]  

  • 42. An efficient utilization of chromium-containing vanadium tailings: Extraction of chromium by soda roasting-water leaching and preparation of chromium oxide.
    Wen J; Jiang T; Gao H; Zhou W; Xu Y; Zheng X; Liu Y; Xue X
    J Environ Manage; 2019 Aug; 244():119-126. PubMed ID: 31112876
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Particle sorting to improve the removal of fluoride and aluminum nitride from secondary aluminum dross by roasting.
    Xie H; Guo Z; Xu R; Zhang Y
    Environ Sci Pollut Res Int; 2023 Apr; 30(19):54536-54546. PubMed ID: 36872407
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A study on pyro-hydrometallurgical process for selective recovery of Pb, Sn and Sb from lead dross.
    Kim WJ; Seo S; Lee SI; Kim DW; Kim MJ
    J Hazard Mater; 2021 Sep; 417():126071. PubMed ID: 34229387
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Organic reductants based leaching: A sustainable process for the recovery of valuable metals from spent lithium ion batteries.
    Chen X; Guo C; Ma H; Li J; Zhou T; Cao L; Kang D
    Waste Manag; 2018 May; 75():459-468. PubMed ID: 29366798
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A thermodynamic description for water, hydrogen fluoride and hydrogen dissolutions in cryolite-base molten salts.
    Wang K; Chartrand P
    Phys Chem Chem Phys; 2018 Jun; 20(25):17324-17341. PubMed ID: 29904769
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Recovery of iron from cyanide tailings with reduction roasting-water leaching followed by magnetic separation.
    Zhang Y; Li H; Yu X
    J Hazard Mater; 2012 Apr; 213-214():167-74. PubMed ID: 22333161
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Selective recovery of lithium and iron phosphate/carbon from spent lithium iron phosphate cathode material by anionic membrane slurry electrolysis.
    Li Z; Liu D; Xiong J; He L; Zhao Z; Wang D
    Waste Manag; 2020 Apr; 107():1-8. PubMed ID: 32248067
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Composition analysis of the cathode active material of spent Li-ion batteries leached in citric acid solution: A study to monitor and assist recycling processes.
    Almeida JR; Moura MN; Barrada RV; Barbieri EMS; Carneiro MTWD; Ferreira SAD; Lelis MFF; de Freitas MBJG; Brandão GP
    Sci Total Environ; 2019 Oct; 685():589-595. PubMed ID: 31181535
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Municipal solid waste incineration fly ash exposed to carbonation and acid rain corrosion scenarios: Release behavior, environmental risk, and dissolution mechanism of toxic metals.
    Li W; Sun Y; Xin M; Bian R; Wang H; Wang YN; Hu Z; Linh HN; Zhang D
    Sci Total Environ; 2020 Nov; 744():140857. PubMed ID: 32688004
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Characterization of inorganic fraction of spent potliners: evaluation of the cyanides and fluorides content.
    Silveira BI; Dantas AE; Blasquez JE; Santos RK
    J Hazard Mater; 2002 Jan; 89(2-3):177-83. PubMed ID: 11744203
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Environmental friendly technology for aluminum electrolytic capacitors recycling from waste printed circuit boards.
    Wang J; Xu Z
    J Hazard Mater; 2017 Mar; 326():1-9. PubMed ID: 27987444
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Reduction-melting combined with a Na₂CO₃ flux recycling process for lead recovery from cathode ray tube funnel glass.
    Okada T; Yonezawa S
    Waste Manag; 2014 Aug; 34(8):1470-9. PubMed ID: 24816522
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Enhancement in leaching process of lithium and cobalt from spent lithium-ion batteries using benzenesulfonic acid system.
    Fu Y; He Y; Qu L; Feng Y; Li J; Liu J; Zhang G; Xie W
    Waste Manag; 2019 Apr; 88():191-199. PubMed ID: 31079631
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Chlorinated polyvinyl chloride (CPVC) assisted leaching of lithium and cobalt from spent lithium-ion battery in subcritical water.
    Nshizirungu T; Agarwal A; Jo YT; Rana M; Shin D; Park JH
    J Hazard Mater; 2020 Jul; 393():122367. PubMed ID: 32114140
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Highly efficient fluoride extraction from simulant leachate of spent potlining via La-loaded chelating resin. An equilibrium study.
    Robshaw T; Tukra S; Hammond DB; Leggett GJ; Ogden MD
    J Hazard Mater; 2019 Jan; 361():200-209. PubMed ID: 30189369
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Recovery of fluorine from bastnasite as synthetic cryolite by-product.
    Wang L; Wang C; Yu Y; Huang X; Long Z; Hou Y; Cui D
    J Hazard Mater; 2012 Mar; 209-210():77-83. PubMed ID: 22281026
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A combined recovery process of metals in spent lithium-ion batteries.
    Li J; Shi P; Wang Z; Chen Y; Chang CC
    Chemosphere; 2009 Nov; 77(8):1132-6. PubMed ID: 19775724
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cryolite (Na
    Ya V; Chen YC; Chou YH; Choo KH; Liu JC; Mameda N; Li CW
    J Hazard Mater; 2019 Apr; 368():90-96. PubMed ID: 30665112
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Eco-friendly recovery of metals from waste mobile printed circuit boards using low temperature roasting.
    Panda R; Jadhao PR; Pant KK; Naik SN; Bhaskar T
    J Hazard Mater; 2020 Aug; 395():122642. PubMed ID: 32325341
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.