BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 33069232)

  • 1. Improved thermostability of creatinase from Alcaligenes Faecalis through non-biased phylogenetic consensus-guided mutagenesis.
    Bai X; Li D; Ma F; Deng X; Luo M; Feng Y; Yang G
    Microb Cell Fact; 2020 Oct; 19(1):194. PubMed ID: 33069232
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Improving the activity of creatinase from
    Bian J; Hao J; Yang GY
    Sheng Wu Gong Cheng Xue Bao; 2022 Dec; 38(12):4601-4614. PubMed ID: 36593196
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein engineering of Bacillus acidopullulyticus pullulanase for enhanced thermostability using in silico data driven rational design methods.
    Chen A; Li Y; Nie J; McNeil B; Jeffrey L; Yang Y; Bai Z
    Enzyme Microb Technol; 2015 Oct; 78():74-83. PubMed ID: 26215347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rational design-based engineering of a thermostable phytase by site-directed mutagenesis.
    Fakhravar A; Hesampour A
    Mol Biol Rep; 2018 Dec; 45(6):2053-2061. PubMed ID: 30196454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing the thermostability of fumarase C from Corynebacterium glutamicum via molecular modification.
    Lin L; Wang Y; Wu M; Zhu L; Yang L; Lin J
    Enzyme Microb Technol; 2018 Aug; 115():45-51. PubMed ID: 29859602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing thermal tolerance of a fungal GH11 xylanase guided by B-factor analysis and multiple sequence alignment.
    Han N; Ma Y; Mu Y; Tang X; Li J; Huang Z
    Enzyme Microb Technol; 2019 Dec; 131():109422. PubMed ID: 31615659
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Consensus design for improved thermostability of lipoxygenase from Anabaena sp. PCC 7120.
    Qian H; Zhang C; Lu Z; Xia B; Bie X; Zhao H; Lu F; Yang GY
    BMC Biotechnol; 2018 Sep; 18(1):57. PubMed ID: 30236091
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving the Thermostability of Glutamate Decarboxylase from Lactobacillus brevis by Consensus Mutagenesis.
    Hua Y; Lyu C; Liu C; Wang H; Hu S; Zhao W; Mei J; Huang J; Mei L
    Appl Biochem Biotechnol; 2020 Aug; 191(4):1456-1469. PubMed ID: 32124175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved thermostability of Clostridium thermocellum endoglucanase Cel8A by using consensus-guided mutagenesis.
    Anbar M; Gul O; Lamed R; Sezerman UO; Bayer EA
    Appl Environ Microbiol; 2012 May; 78(9):3458-64. PubMed ID: 22389377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lys-Arg mutation improved the thermostability of Bacillus cereus neutral protease through increased residue interactions.
    Osire T; Yang T; Xu M; Zhang X; Li X; Niyomukiza S; Rao Z
    World J Microbiol Biotechnol; 2019 Oct; 35(11):173. PubMed ID: 31673794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing thermal tolerance of Aspergillus niger PhyA phytase directed by structural comparison and computational simulation.
    Han N; Miao H; Yu T; Xu B; Yang Y; Wu Q; Zhang R; Huang Z
    BMC Biotechnol; 2018 Jun; 18(1):36. PubMed ID: 29859065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and sequence analysis-based engineering of pullulanase from Anoxybacillus sp. LM18-11 for improved thermostability.
    Li SF; Xu JY; Bao YJ; Zheng HC; Song H
    J Biotechnol; 2015 Sep; 210():8-14. PubMed ID: 26116135
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of recombinant endo-1,4-β-xylanase of Bacillus halodurans C-125 and rational identification of hot spot amino acid residues responsible for enhancing thermostability by an in-silico approach.
    Mahmood MS; Rasul F; Saleem M; Afroz A; Malik MF; Ashraf NM; Rashid U; Naz S; Zeeshan N
    Mol Biol Rep; 2019 Aug; 46(4):3651-3662. PubMed ID: 31079316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering Clostridium absonum 7α-hydroxysteroid Dehydrogenase for Enhancing Thermostability Based on Flexible Site and ΔΔG Prediction.
    Lou D; Tan J; Zhu L; Ji S; Tang S; Yao K; Han J; Wang B
    Protein Pept Lett; 2018; 25(3):230-235. PubMed ID: 29141528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improvement of Alcaligenes faecalis nitrilase by gene site saturation mutagenesis and its application in stereospecific biosynthesis of (R)-(-)-mandelic acid.
    Liu ZQ; Zhang XH; Xue YP; Xu M; Zheng YG
    J Agric Food Chem; 2014 May; 62(20):4685-94. PubMed ID: 24766313
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rational Engineering of a Cold-Adapted α-Amylase from the Antarctic Ciliate Euplotes focardii for Simultaneous Improvement of Thermostability and Catalytic Activity.
    Yang G; Yao H; Mozzicafreddo M; Ballarini P; Pucciarelli S; Miceli C
    Appl Environ Microbiol; 2017 Jul; 83(13):. PubMed ID: 28455329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermostabilizing ketoreductase ChKRED20 by consensus mutagenesis at dimeric interfaces.
    Yang YJ; Pei XQ; Liu Y; Wu ZL
    Enzyme Microb Technol; 2022 Aug; 158():110052. PubMed ID: 35490547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Improving the thermostability of α-amylase from Rhizopus oryzae by rational design].
    Yang Q; Tang B; Li S
    Sheng Wu Gong Cheng Xue Bao; 2018 Jul; 34(7):1117-1127. PubMed ID: 30058310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving the thermostability of Geobacillus stearothermophilus xylanase XT6 by directed evolution and site-directed mutagenesis.
    Zhang ZG; Yi ZL; Pei XQ; Wu ZL
    Bioresour Technol; 2010 Dec; 101(23):9272-8. PubMed ID: 20691586
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced thermostability of methyl parathion hydrolase from Ochrobactrum sp. M231 by rational engineering of a glycine to proline mutation.
    Tian J; Wang P; Gao S; Chu X; Wu N; Fan Y
    FEBS J; 2010 Dec; 277(23):4901-8. PubMed ID: 20977676
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.