These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 33069437)
1. Microalgae harvesting using colloidal gas aphrons generated from single and mixed surfactants. Pal P; Corpuz AG; Hasan SW; Sillanpää M; Banat F Chemosphere; 2021 Jun; 273():128568. PubMed ID: 33069437 [TBL] [Abstract][Full Text] [Related]
2. Surface-modified microbubbles (colloidal gas aphrons) for nanoparticle removal in a continuous bubble generation-flotation separation system. Zhang M; Guiraud P Water Res; 2017 Dec; 126():399-410. PubMed ID: 28987891 [TBL] [Abstract][Full Text] [Related]
3. Gemini surfactant: A novel flotation collector for harvesting of microalgae by froth flotation. Huang Z; Cheng C; Liu Z; Luo W; Zhong H; He G; Liang C; Li L; Deng L; Fu W Bioresour Technol; 2019 Mar; 275():421-424. PubMed ID: 30611623 [TBL] [Abstract][Full Text] [Related]
4. Investigation on the role of surfactants in bubble-algae interaction in flotation harvesting of Chlorella vulgaris. Shen Z; Li Y; Wen H; Ren X; Liu J; Yang L Sci Rep; 2018 Feb; 8(1):3303. PubMed ID: 29459703 [TBL] [Abstract][Full Text] [Related]
5. Recovery of lactoferrin and lactoperoxidase from sweet whey using colloidal gas aphrons (CGAs) generated from an anionic surfactant, AOT. Fuda E; Jauregi P; Pyle DL Biotechnol Prog; 2004; 20(2):514-25. PubMed ID: 15058997 [TBL] [Abstract][Full Text] [Related]
6. Removal of harmful algal blooms in freshwater by buoyant-bead flotation using chitosan-coated fly ash cenospheres. Zou X; Xu K; Xue Y; Qu Y; Li Y Environ Sci Pollut Res Int; 2020 Aug; 27(23):29239-29247. PubMed ID: 32440871 [TBL] [Abstract][Full Text] [Related]
7. The application of surfactant colloidal gas aphrons to remediate contaminated soil: A review. Tao W; Mei C; Hamzah N J Contam Hydrol; 2020 May; 231():103620. PubMed ID: 32126294 [TBL] [Abstract][Full Text] [Related]
8. Cooking oil-surfactant emulsion in water for harvesting Chlorella vulgaris by sedimentation or flotation. Potocar T; Leite LS; Daniel LA; Pivokonsky M; Matoulkova D; Branyik T Bioresour Technol; 2020 Sep; 311():123508. PubMed ID: 32416494 [TBL] [Abstract][Full Text] [Related]
9. Efficient elimination and re-growth inhibition of harmful bloom-forming cyanobacteria using surface-functionalized microbubbles. Zhang M; Wang Y; Wang Y; Li M; Zhang D; Qiang Z; Pan X Water Res; 2019 Sep; 161():473-485. PubMed ID: 31229728 [TBL] [Abstract][Full Text] [Related]
10. Colloidal gas aphrons for biotechnology applications: a mini review. Pal P; Hasan SW; Abu Haija M; Sillanpää M; Banat F Crit Rev Biotechnol; 2023 Dec; 43(7):971-981. PubMed ID: 35968911 [TBL] [Abstract][Full Text] [Related]
11. Towards a general kinetic microalgae model: Extending a semi-deterministic green microalgae model for the cyanobacterium Arthrospira platensis and red alga Porphyridium purpureum. Manhaeghe D; Arashiro LT; Van Hulle SWH; Rousseau DPL Bioresour Technol; 2021 Dec; 342():125993. PubMed ID: 34592617 [TBL] [Abstract][Full Text] [Related]
12. Application of colloidal gas aphron suspensions produced from Sapindus mukorossi for arsenic removal from contaminated soil. Mukhopadhyay S; Mukherjee S; Hashim MA; Sen Gupta B Chemosphere; 2015 Jan; 119():355-362. PubMed ID: 25061940 [TBL] [Abstract][Full Text] [Related]
13. Hematological and anthelminthic responses of tambaqui (Colossoma macropomum) supplemented with Artrhospira platensis and Chlorella vulgaris. Ferreira ACDS; Pacheco AM; Salomão CB; Moreira MVF; Martins MF; Santos PVN; Prestes L; Furtado YIC; Tavares-Dias M; Silveira-Junior AMD; Yoshioka ETO Braz J Biol; 2024; 84():e278486. PubMed ID: 38985059 [TBL] [Abstract][Full Text] [Related]
14. Characterization and pyrolysis of Chlorella vulgaris and Arthrospira platensis: potential of bio-oil and chemical production by Py-GC/MS analysis. Almeida HN; Calixto GQ; Chagas BME; Melo DMA; Resende FM; Melo MAF; Braga RM Environ Sci Pollut Res Int; 2017 Jun; 24(16):14142-14150. PubMed ID: 28417328 [TBL] [Abstract][Full Text] [Related]
15. Buoy-bead flotation harvesting of the microalgae Chlorella vulgaris using surface-layered polymeric microspheres: A novel approach. Xu K; Zou X; Wen H; Xue Y; Zhao S; Li Y Bioresour Technol; 2018 Nov; 267():341-346. PubMed ID: 30029180 [TBL] [Abstract][Full Text] [Related]
16. Acute toxicity of textile dye Methylene blue on growth and metabolism of selected freshwater microalgae. Krishna Moorthy A; Govindarajan Rathi B; Shukla SP; Kumar K; Shree Bharti V Environ Toxicol Pharmacol; 2021 Feb; 82():103552. PubMed ID: 33246139 [TBL] [Abstract][Full Text] [Related]
17. Flotation of algae for water reuse and biomass production: role of zeta potential and surfactant to separate algal particles. Kwak DH; Kim MS Water Sci Technol; 2015; 72(5):762-9. PubMed ID: 26287835 [TBL] [Abstract][Full Text] [Related]
18. Spirulina platensis is more efficient than Chlorella homosphaera in carbohydrate productivity. Margarites AC; Volpato N; Araújo E; Cardoso LG; Bertolin TE; Colla LM; Costa JAV Environ Technol; 2017 Sep; 38(17):2209-2216. PubMed ID: 27790947 [TBL] [Abstract][Full Text] [Related]
19. Effective harvesting of the microalgae Chlorella vulgaris via flocculation-flotation with bioflocculant. Lei X; Chen Y; Shao Z; Chen Z; Li Y; Zhu H; Zhang J; Zheng W; Zheng T Bioresour Technol; 2015 Dec; 198():922-5. PubMed ID: 26391967 [TBL] [Abstract][Full Text] [Related]
20. Fishmeal replacement with Spirulina Platensis and Chlorella vulgaris in African catfish (Clarias gariepinus) diet: Effect on antioxidant enzyme activities and haematological parameters. Raji AA; Alaba PA; Yusuf H; Abu Bakar NH; Mohd Taufek N; Muin H; Alias Z; Milow P; Abdul Razak S Res Vet Sci; 2018 Aug; 119():67-75. PubMed ID: 29864632 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]