BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 33069538)

  • 1. Isoflavonoid biosynthesis in cultivated and wild soybeans grown in the field under adverse climate conditions.
    Veremeichik GN; Grigorchuk VP; Butovets ES; Lukyanchuk LM; Brodovskaya EV; Bulgakov DV; Bulgakov VP
    Food Chem; 2021 Apr; 342():128292. PubMed ID: 33069538
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methyl Jasmonate Increases Isoflavone Production in Soybean Cell Cultures by Activating Structural Genes Involved in Isoflavonoid Biosynthesis.
    Jeong YJ; An CH; Park SC; Pyun JW; Lee J; Kim SW; Kim HS; Kim H; Jeong JC; Kim CY
    J Agric Food Chem; 2018 Apr; 66(16):4099-4105. PubMed ID: 29630360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptome analysis reveals a critical role of CHS7 and CHS8 genes for isoflavonoid synthesis in soybean seeds.
    Dhaubhadel S; Gijzen M; Moy P; Farhangkhoee M
    Plant Physiol; 2007 Jan; 143(1):326-38. PubMed ID: 17098860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and Secretion of Isoflavones by Field-Grown Soybean.
    Sugiyama A; Yamazaki Y; Hamamoto S; Takase H; Yazaki K
    Plant Cell Physiol; 2017 Sep; 58(9):1594-1600. PubMed ID: 28637253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changing light promotes isoflavone biosynthesis in soybean pods and enhances their resistance to mildew infection.
    Li X; Yang C; Chen J; He Y; Deng J; Xie C; Xiao X; Long X; Wu X; Liu W; Du J; Yang F; Wang X; Yong T; Zhang J; Wu Y; Yang W; Liu J
    Plant Cell Environ; 2021 Aug; 44(8):2536-2550. PubMed ID: 34118074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inducible De Novo Biosynthesis of Isoflavonoids in Soybean Leaves by Spodoptera litura Derived Elicitors: Tracer Techniques Aided by High Resolution LCMS.
    Nakata R; Kimura Y; Aoki K; Yoshinaga N; Teraishi M; Okumoto Y; Huffaker A; Schmelz EA; Mori N
    J Chem Ecol; 2016 Dec; 42(12):1226-1236. PubMed ID: 27826811
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increase in isoflavonoid content in Glycine max cells transformed by the constitutively active Ca
    Veremeichik GN; Grigorchuk VP; Silanteva SA; Shkryl YN; Bulgakov DV; Brodovskaya EV; Bulgakov VP
    Phytochemistry; 2019 Jan; 157():111-120. PubMed ID: 30399493
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A combinatorial action of GmMYB176 and GmbZIP5 controls isoflavonoid biosynthesis in soybean (Glycine max).
    Anguraj Vadivel AK; McDowell T; Renaud JB; Dhaubhadel S
    Commun Biol; 2021 Mar; 4(1):356. PubMed ID: 33742087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ethylene Induced a High Accumulation of Dietary Isoflavones and Expression of Isoflavonoid Biosynthetic Genes in Soybean (Glycine max) Leaves.
    Yuk HJ; Song YH; Curtis-Long MJ; Kim DW; Woo SG; Lee YB; Uddin Z; Kim CY; Park KH
    J Agric Food Chem; 2016 Oct; 64(39):7315-7324. PubMed ID: 27626287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isoflavonoid accumulation in soybean hairy roots upon treatment with Fusarium solani.
    Lozovaya VV; Lygin AV; Zernova OV; Li S; Hartman GL; Widholm JM
    Plant Physiol Biochem; 2004; 42(7-8):671-9. PubMed ID: 15331097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptomic evidence for the control of soybean root isoflavonoid content by regulation of overlapping phenylpropanoid pathways.
    Dastmalchi M; Chapman P; Yu J; Austin RS; Dhaubhadel S
    BMC Genomics; 2017 Jan; 18(1):70. PubMed ID: 28077078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteomic insights into synthesis of isoflavonoids in soybean seeds.
    Dastmalchi M; Dhaubhadel S
    Proteomics; 2015 May; 15(10):1646-57. PubMed ID: 25757747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Soybean CCA1-like MYB transcription factor GmMYB133 modulates isoflavonoid biosynthesis.
    Bian S; Li R; Xia S; Liu Y; Jin D; Xie X; Dhaubhadel S; Zhai L; Wang J; Li X
    Biochem Biophys Res Commun; 2018 Dec; 507(1-4):324-329. PubMed ID: 30448057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Community structures of the rhizomicrobiomes of cultivated and wild soybeans in their continuous cropping.
    Tian L; Shi S; Ma L; Tran LP; Tian C
    Microbiol Res; 2020 Feb; 232():126390. PubMed ID: 31855689
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of Different Oligochitosans on Isoflavone Metabolites, Antioxidant Activity, and Isoflavone Biosynthetic Genes in Soybean ( Glycine max) Seeds during Germination.
    Jia Y; Ma Y; Zou P; Cheng G; Zhou J; Cai S
    J Agric Food Chem; 2019 Apr; 67(16):4652-4661. PubMed ID: 30933513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isoflavonoid biosynthesis and accumulation in developing soybean seeds.
    Dhaubhadel S; McGarvey BD; Williams R; Gijzen M
    Plant Mol Biol; 2003 Dec; 53(6):733-43. PubMed ID: 15082922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accumulation of genistein and daidzein, soybean isoflavones implicated in promoting human health, is significantly elevated by irrigation.
    Bennett JO; Yu O; Heatherly LG; Krishnan HB
    J Agric Food Chem; 2004 Dec; 52(25):7574-9. PubMed ID: 15675806
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Partial reconstruction of flavonoid and isoflavonoid biosynthesis in yeast using soybean type I and type II chalcone isomerases.
    Ralston L; Subramanian S; Matsuno M; Yu O
    Plant Physiol; 2005 Apr; 137(4):1375-88. PubMed ID: 15778463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ABA-Dependent Regulation of Calcium-Dependent Protein Kinase Gene
    Veremeichik GN; Brodovskaya EV; Grigorchuk VP; Butovets ES; Lukyanchuk LM; Bulgakov VP
    Life (Basel); 2022 Oct; 12(10):. PubMed ID: 36295011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of spaceflight on isoflavonoid accumulation in etiolated soybean seedlings.
    Levine LH; Levine HG; Stryjewski EC; Prima V; Piastuch WC
    J Gravit Physiol; 2001 Dec; 8(2):21-7. PubMed ID: 12365447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.