BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 33069552)

  • 1. Genetic code expansion in mammalian cells: A plasmid system comparison.
    Zhou W; Wesalo JS; Liu J; Deiters A
    Bioorg Med Chem; 2020 Dec; 28(24):115772. PubMed ID: 33069552
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering the Genetic Code in Cells and Animals: Biological Considerations and Impacts.
    Wang L
    Acc Chem Res; 2017 Nov; 50(11):2767-2775. PubMed ID: 28984438
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome.
    Neumann H; Wang K; Davis L; Garcia-Alai M; Chin JW
    Nature; 2010 Mar; 464(7287):441-4. PubMed ID: 20154731
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmid Curing and Exchange Using a Novel Counter-Selectable Marker Based on Unnatural Amino Acid Incorporation at a Sense Codon.
    Kato Y
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34768910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A facile system for encoding unnatural amino acids in mammalian cells.
    Chen PR; Groff D; Guo J; Ou W; Cellitti S; Geierstanger BH; Schultz PG
    Angew Chem Int Ed Engl; 2009; 48(22):4052-5. PubMed ID: 19378306
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transferability of N-terminal mutations of pyrrolysyl-tRNA synthetase in one species to that in another species on unnatural amino acid incorporation efficiency.
    Williams TL; Iskandar DJ; Nödling AR; Tan Y; Luk LYP; Tsai YH
    Amino Acids; 2021 Jan; 53(1):89-96. PubMed ID: 33331978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crucial optimization of translational components towards efficient incorporation of unnatural amino acids into proteins in mammalian cells.
    Xiang L; Moncivais K; Jiang F; Willams B; Alfonta L; Zhang ZJ
    PLoS One; 2013; 8(7):e67333. PubMed ID: 23874413
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expanding the genetic code of Caenorhabditis elegans using bacterial aminoacyl-tRNA synthetase/tRNA pairs.
    Parrish AR; She X; Xiang Z; Coin I; Shen Z; Briggs SP; Dillin A; Wang L
    ACS Chem Biol; 2012 Jul; 7(7):1292-302. PubMed ID: 22554080
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-Plasmid-Based System for Efficient Noncanonical Amino Acid Mutagenesis in Cultured Mammalian Cells.
    Cohen S; Arbely E
    Chembiochem; 2016 Jun; 17(11):1008-11. PubMed ID: 27120490
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic Encoding of Unnatural Amino Acids in C. elegans.
    Davis L; Greiss S
    Methods Mol Biol; 2018; 1728():389-408. PubMed ID: 29405011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetically expanded cell-free protein synthesis using endogenous pyrrolysyl orthogonal translation system.
    Chemla Y; Ozer E; Schlesinger O; Noireaux V; Alfonta L
    Biotechnol Bioeng; 2015 Aug; 112(8):1663-72. PubMed ID: 25753985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inducible Genetic Code Expansion in Eukaryotes.
    Koehler C; Estrada Girona G; Reinkemeier CD; Lemke EA
    Chembiochem; 2020 Nov; 21(22):3216-3219. PubMed ID: 32598534
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An efficient system for incorporation of unnatural amino acids in response to the four-base codon AGGA in Escherichia coli.
    Lee BS; Kim S; Ko BJ; Yoo TH
    Biochim Biophys Acta Gen Subj; 2017 Nov; 1861(11 Pt B):3016-3023. PubMed ID: 28212794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fine-tuning interaction between aminoacyl-tRNA synthetase and tRNA for efficient synthesis of proteins containing unnatural amino acids.
    Wang N; Ju T; Niu W; Guo J
    ACS Synth Biol; 2015 Mar; 4(3):207-12. PubMed ID: 24847685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of multiple, mutually orthogonal prolyl-tRNA synthetase/tRNA pairs for unnatural amino acid mutagenesis in Escherichia coli.
    Chatterjee A; Xiao H; Schultz PG
    Proc Natl Acad Sci U S A; 2012 Sep; 109(37):14841-6. PubMed ID: 22927411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic code expansion in the mouse brain.
    Ernst RJ; Krogager TP; Maywood ES; Zanchi R; Beránek V; Elliott TS; Barry NP; Hastings MH; Chin JW
    Nat Chem Biol; 2016 Oct; 12(10):776-778. PubMed ID: 27571478
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient viral delivery system for unnatural amino acid mutagenesis in mammalian cells.
    Chatterjee A; Xiao H; Bollong M; Ai HW; Schultz PG
    Proc Natl Acad Sci U S A; 2013 Jul; 110(29):11803-8. PubMed ID: 23818609
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An expanding genetic code.
    Xie J; Schultz PG
    Methods; 2005 Jul; 36(3):227-38. PubMed ID: 16076448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Truncation-Free Genetic Code Expansion with Tetrazine Amino Acids for Quantitative Protein Ligations.
    Eddins AJ; Bednar RM; Jana S; Pung AH; Mbengi L; Meyer K; Perona JJ; Cooley RB; Karplus PA; Mehl RA
    Bioconjug Chem; 2023 Dec; 34(12):2243-2254. PubMed ID: 38047550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic Code Expansion in Pseudomonas putida KT2440.
    Gao T; Guo J; Niu W
    Methods Mol Biol; 2024; 2760():209-217. PubMed ID: 38468091
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.