BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 33069794)

  • 21. The direct, not V1-mediated, functional influence between the thalamus and middle temporal complex in the human brain is modulated by the speed of visual motion.
    Gaglianese A; Costagli M; Ueno K; Ricciardi E; Bernardi G; Pietrini P; Cheng K
    Neuroscience; 2015 Jan; 284():833-844. PubMed ID: 25450965
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Motion-defined surface segregation in human visual cortex.
    Vigano GJ; Maloney RT; Clifford CW
    J Cogn Neurosci; 2014 Nov; 26(11):2479-89. PubMed ID: 24738771
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Neural correlates associated with impaired global motion perception in cerebral visual impairment (CVI).
    Pamir Z; Bauer CM; Bailin ES; Bex PJ; Somers DC; Merabet LB
    Neuroimage Clin; 2021; 32():102821. PubMed ID: 34628303
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transcranial static magnetic field stimulation over hMT+ inhibits visual motion discriminability.
    Takami A; Kawajiri T; Komiyama T; Aoyama C; Shimegi S
    Sci Rep; 2024 Jan; 14(1):1109. PubMed ID: 38212348
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The processing of first- and second-order motion in human visual cortex assessed by functional magnetic resonance imaging (fMRI).
    Smith AT; Greenlee MW; Singh KD; Kraemer FM; Hennig J
    J Neurosci; 1998 May; 18(10):3816-30. PubMed ID: 9570811
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Distributed and retinotopically asymmetric processing of coherent motion in mouse visual cortex.
    Sit KK; Goard MJ
    Nat Commun; 2020 Jul; 11(1):3565. PubMed ID: 32678087
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Direct Demonstration of Functional Differences between Subdivisions of Human V5/MT.
    Strong SL; Silson EH; Gouws AD; Morland AB; McKeefry DJ
    Cereb Cortex; 2017 Jan; 27(1):1-10. PubMed ID: 28365777
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Integration of Motion and Form Cues for the Perception of Self-Motion in the Human Brain.
    Kuai SG; Shan ZK; Chen J; Xu ZX; Li JM; Field DT; Li L
    J Neurosci; 2020 Jan; 40(5):1120-1132. PubMed ID: 31826945
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Similar effects of repetitive transcranial magnetic stimulation of MT+ and a dorsomedial extrastriate site including V3A on pattern detection and position discrimination of rotating and radial motion patterns.
    Harvey BM; Braddick OJ; Cowey A
    J Vis; 2010 May; 10(5):21. PubMed ID: 20616130
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Detection of first- and second-order coherent motion in blindsight.
    Pavan A; Alexander I; Campana G; Cowey A
    Exp Brain Res; 2011 Oct; 214(2):261-71. PubMed ID: 21842409
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Repetitive transcranial magnetic stimulation of human area MT/V5 disrupts perception and storage of the motion aftereffect.
    Théoret H; Kobayashi M; Ganis G; Di Capua P; Pascual-Leone A
    Neuropsychologia; 2002; 40(13):2280-7. PubMed ID: 12417458
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Processing of auditory motion in inferior parietal lobule: evidence from transcranial magnetic stimulation.
    Lewald J; Staedtgen M; Sparing R; Meister IG
    Neuropsychologia; 2011 Jan; 49(2):209-15. PubMed ID: 21130790
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Predictive position computations mediated by parietal areas: TMS evidence.
    Edwards G; Paeye C; Marque P; VanRullen R; Cavanagh P
    Neuroimage; 2017 Jun; 153():49-57. PubMed ID: 28341161
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transcranial magnetic stimulation reveals two cortical pathways for visual body processing.
    Urgesi C; Calvo-Merino B; Haggard P; Aglioti SM
    J Neurosci; 2007 Jul; 27(30):8023-30. PubMed ID: 17652592
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Implied motion from form in the human visual cortex.
    Krekelberg B; Vatakis A; Kourtzi Z
    J Neurophysiol; 2005 Dec; 94(6):4373-86. PubMed ID: 16107528
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dorsal and ventral stream contributions to form-from-motion perception in a patient with form-from motion deficit: a case report.
    Mercier MR; Schwartz S; Spinelli L; Michel CM; Blanke O
    Brain Struct Funct; 2017 Mar; 222(2):1093-1107. PubMed ID: 27318997
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Extrastriate Visual Areas Integrate Form Features over Space and Time to Construct Representations of Stationary and Rigidly Rotating Objects.
    McCarthy JD; Kohler PJ; Tse PU; Caplovitz GP
    J Cogn Neurosci; 2015 Nov; 27(11):2158-73. PubMed ID: 26226075
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An intracranial event-related potential study on transformational apparent motion. Does its neural processing differ from real motion?
    Bertrand JA; Lassonde M; Robert M; Nguyen DK; Bertone A; Doucet MÈ; Bouthillier A; Lepore F
    Exp Brain Res; 2012 Jan; 216(1):145-53. PubMed ID: 22071683
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Functional signalers of changes in visual stimuli: cortical responses to increments and decrements in motion coherence.
    Costagli M; Ueno K; Sun P; Gardner JL; Wan X; Ricciardi E; Pietrini P; Tanaka K; Cheng K
    Cereb Cortex; 2014 Jan; 24(1):110-8. PubMed ID: 23010749
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Recovery from object substitution masking induced by transient suppression of visual motion processing: a repetitive transcranial magnetic stimulation study.
    Hirose N; Kihara K; Mima T; Ueki Y; Fukuyama H; Osaka N
    J Exp Psychol Hum Percept Perform; 2007 Dec; 33(6):1495-503. PubMed ID: 18085959
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.