These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 33069865)

  • 1. Estimation of Multiple Sclerosis lesion age on magnetic resonance imaging.
    Sweeney EM; Nguyen TD; Kuceyeski A; Ryan SM; Zhang S; Zexter L; Wang Y; Gauthier SA
    Neuroimage; 2021 Jan; 225():117451. PubMed ID: 33069865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. QSMRim-Net: Imbalance-aware learning for identification of chronic active multiple sclerosis lesions on quantitative susceptibility maps.
    Zhang H; Nguyen TD; Zhang J; Marcille M; Spincemaille P; Wang Y; Gauthier SA; Sweeney EM
    Neuroimage Clin; 2022; 34():102979. PubMed ID: 35247730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diagnostic accuracy of semiautomatic lesion detection plus quantitative susceptibility mapping in the identification of new and enhancing multiple sclerosis lesions.
    Zhang S; Nguyen TD; Zhao Y; Gauthier SA; Wang Y; Gupta A
    Neuroimage Clin; 2018; 18():143-148. PubMed ID: 29387531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PREVAIL: Predicting Recovery through Estimation and Visualization of Active and Incident Lesions.
    Dworkin JD; Sweeney EM; Schindler MK; Chahin S; Reich DS; Shinohara RT
    Neuroimage Clin; 2016; 12():293-9. PubMed ID: 27551666
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison between gadolinium-enhanced 2D T1-weighted gradient-echo and spin-echo sequences in the detection of active multiple sclerosis lesions on 3.0T MRI.
    Aymerich FX; Auger C; Alcaide-Leon P; Pareto D; Huerga E; Corral JF; Mitjana R; Sastre-Garriga J; Montalban X; Rovira A
    Eur Radiol; 2017 Apr; 27(4):1361-1368. PubMed ID: 27456965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated separation of diffusely abnormal white matter from focal white matter lesions on MRI in multiple sclerosis.
    Maranzano J; Dadar M; Zhernovaia M; Arnold DL; Collins DL; Narayanan S
    Neuroimage; 2020 Jun; 213():116690. PubMed ID: 32119987
    [TBL] [Abstract][Full Text] [Related]  

  • 7. T1- Thresholds in Black Holes Increase Clinical-Radiological Correlation in Multiple Sclerosis Patients.
    Thaler C; Faizy T; Sedlacik J; Holst B; Stellmann JP; Young KL; Heesen C; Fiehler J; Siemonsen S
    PLoS One; 2015; 10(12):e0144693. PubMed ID: 26659852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep learning of joint myelin and T1w MRI features in normal-appearing brain tissue to distinguish between multiple sclerosis patients and healthy controls.
    Yoo Y; Tang LYW; Brosch T; Li DKB; Kolind S; Vavasour I; Rauscher A; MacKay AL; Traboulsee A; Tam RC
    Neuroimage Clin; 2018; 17():169-178. PubMed ID: 29071211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Choroid plexus volume in multiple sclerosis can be estimated on structural MRI avoiding contrast injection.
    Visani V; Pizzini FB; Natale V; Tamanti A; Anglani M; Bertoldo A; Calabrese M; Castellaro M
    Eur Radiol Exp; 2024 Feb; 8(1):33. PubMed ID: 38409562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accuracy of Unenhanced MRI in the Detection of New Brain Lesions in Multiple Sclerosis.
    Eichinger P; Schön S; Pongratz V; Wiestler H; Zhang H; Bussas M; Hoshi MM; Kirschke J; Berthele A; Zimmer C; Hemmer B; Mühlau M; Wiestler B
    Radiology; 2019 May; 291(2):429-435. PubMed ID: 30860448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Histopathology-validated recommendations for cortical lesion imaging in multiple sclerosis.
    Bouman PM; Steenwijk MD; Pouwels PJW; Schoonheim MM; Barkhof F; Jonkman LE; Geurts JJG
    Brain; 2020 Oct; 143(10):2988-2997. PubMed ID: 32889535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relating multi-sequence longitudinal intensity profiles and clinical covariates in incident multiple sclerosis lesions.
    Sweeney EM; Shinohara RT; Dewey BE; Schindler MK; Muschelli J; Reich DS; Crainiceanu CM; Eloyan A
    Neuroimage Clin; 2016; 10():1-17. PubMed ID: 26693397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Altered signal intensity of active enhancing inflammatory lesions using post-contrast double inversion recovery MR sequence.
    Hodel J; Badr S; Outteryck O; Lebert P; Chechin D; Benadjaoud MA; Pruvo JP; Vermersch P; Leclerc X
    Eur Radiol; 2017 Feb; 27(2):637-641. PubMed ID: 27229340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison between synthetic and conventional magnetic resonance imaging in patients with multiple sclerosis and controls.
    Di Giuliano F; Minosse S; Picchi E; Marfia GA; Da Ros V; Muto M; Muto M; Pistolese CA; Laghi A; Garaci F; Floris R
    MAGMA; 2020 Aug; 33(4):549-557. PubMed ID: 31782035
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparing lesion detection of infratentorial multiple sclerosis lesions between T2-weighted spin-echo, 2D-FLAIR, and 3D-FLAIR sequences.
    Wang KY; Uribe TA; Lincoln CM
    Clin Imaging; 2018; 51():229-234. PubMed ID: 29879598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of sagittal short T1 inversion recovery and T2-weighted FSE sequences for detection of multiple sclerosis spinal cord lesions.
    Nayak NB; Salah R; Huang JC; Hathout GM
    Acta Neurol Scand; 2014 Mar; 129(3):198-203. PubMed ID: 23980614
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clinical application of multi-contrast 7-T MR imaging in multiple sclerosis: increased lesion detection compared to 3 T confined to grey matter.
    de Graaf WL; Kilsdonk ID; Lopez-Soriano A; Zwanenburg JJ; Visser F; Polman CH; Castelijns JA; Geurts JJ; Pouwels PJ; Luijten PR; Barkhof F; Wattjes MP
    Eur Radiol; 2013 Feb; 23(2):528-40. PubMed ID: 22898935
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of Unenhanced and Gadolinium-Enhanced Imaging in Multiple Sclerosis: Is Contrast Needed for Routine Follow-Up MRI?
    Sadigh G; Saindane AM; Waldman AD; Lava NS; Hu R
    AJNR Am J Neuroradiol; 2019 Sep; 40(9):1476-1480. PubMed ID: 31439627
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of unenhanced lesion evolution in multiple sclerosis using radiomics-based models: a machine learning approach.
    Peng Y; Zheng Y; Tan Z; Liu J; Xiang Y; Liu H; Dai L; Xie Y; Wang J; Zeng C; Li Y
    Mult Scler Relat Disord; 2021 Aug; 53():102989. PubMed ID: 34052741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-timepoint low-dimensional characterization and classification of acute versus chronic multiple sclerosis lesions using machine learning.
    Caba B; Cafaro A; Lombard A; Arnold DL; Elliott C; Liu D; Jiang X; Gafson A; Fisher E; Belachew SM; Paragios N
    Neuroimage; 2023 Jan; 265():119787. PubMed ID: 36473647
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.