These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 33069965)

  • 1. Application of level-set method in simulation of normal and cancer cells deformability within a microfluidic device.
    Mirzaaghaian A; Ramiar A; Ranjbar AA; Warkiani ME
    J Biomech; 2020 Nov; 112():110066. PubMed ID: 33069965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deformability study of breast cancer cells using microfluidics.
    Hou HW; Li QS; Lee GY; Kumar AP; Ong CN; Lim CT
    Biomed Microdevices; 2009 Jun; 11(3):557-64. PubMed ID: 19082733
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel microfluidic chip-based sperm-sorting device constructed using design of experiment method.
    Phiphattanaphiphop C; Leksakul K; Phatthanakun R; Khamlor T
    Sci Rep; 2020 Oct; 10(1):17143. PubMed ID: 33051512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic device featuring micro-constrained channels for multi-parametric assessment of cellular biomechanics and high-precision mechanical phenotyping of gastric cells.
    Heng Y; Zheng X; Xu Y; Yan J; Li Y; Sun L; Yang H
    Anal Chim Acta; 2024 May; 1301():342472. PubMed ID: 38553127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationship between transit time and mechanical properties of a cell through a stenosed microchannel.
    Ye T; Shi H; Phan-Thien N; Lim CT; Li Y
    Soft Matter; 2018 Jan; 14(4):533-545. PubMed ID: 29308825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A simple microfluidic device for the deformability assessment of blood cells in a continuous flow.
    Rodrigues RO; Pinho D; Faustino V; Lima R
    Biomed Microdevices; 2015 Dec; 17(6):108. PubMed ID: 26482154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A microfluidic device for continuous white blood cell separation and lysis from whole blood.
    Kim M; Mo Jung S; Lee KH; Jun Kang Y; Yang S
    Artif Organs; 2010 Nov; 34(11):996-1002. PubMed ID: 21092042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-throughput microfluidic micropipette aspiration device to probe time-scale dependent nuclear mechanics in intact cells.
    Davidson PM; Fedorchak GR; Mondésert-Deveraux S; Bell ES; Isermann P; Aubry D; Allena R; Lammerding J
    Lab Chip; 2019 Nov; 19(21):3652-3663. PubMed ID: 31559980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterizing deformability and surface friction of cancer cells.
    Byun S; Son S; Amodei D; Cermak N; Shaw J; Kang JH; Hecht VC; Winslow MM; Jacks T; Mallick P; Manalis SR
    Proc Natl Acad Sci U S A; 2013 May; 110(19):7580-5. PubMed ID: 23610435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterizing Cellular Biophysical Responses to Stress by Relating Density, Deformability, and Size.
    Byun S; Hecht VC; Manalis SR
    Biophys J; 2015 Oct; 109(8):1565-73. PubMed ID: 26488647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Liquid plug propagation in computer-controlled microfluidic airway-on-a-chip with semi-circular microchannels.
    Viola HL; Vasani V; Washington K; Lee JH; Selva C; Li A; Llorente CJ; Murayama Y; Grotberg JB; Romanò F; Takayama S
    Lab Chip; 2024 Jan; 24(2):197-209. PubMed ID: 38093669
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photocell-Based Optofluidic Device for Clogging-Free Cell Transit Time Measurements.
    Storti F; Bonfadini S; Bondelli G; Vurro V; Lanzani G; Criante L
    Biosensors (Basel); 2024 Mar; 14(4):. PubMed ID: 38667147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic cytometric analysis of cancer cell transportability and invasiveness.
    Liu Z; Lee Y; Jang Jh; Li Y; Han X; Yokoi K; Ferrari M; Zhou L; Qin L
    Sci Rep; 2015 Sep; 5():14272. PubMed ID: 26404901
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic Cytometry for High-Throughput Characterization of Single Cell Cytoplasmic Viscosity Using Crossing Constriction Channels.
    Wang K; Sun X; Zhang Y; Wei Y; Chen D; Wu H; Song Z; Long R; Wang J; Chen J
    Cytometry A; 2020 Jun; 97(6):630-637. PubMed ID: 31637858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of microfluidic two-phase flow patterns in lab-on-chip devices.
    Yang Z; Dong T; Halvorsen E
    Biomed Mater Eng; 2014; 24(1):77-83. PubMed ID: 24211885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic determination of lymphocyte vascular deformability: effects of intracellular complexity and early immune activation.
    Kang N; Guo Q; Islamzada E; Ma H; Scott MD
    Integr Biol (Camb); 2018 Apr; 10(4):207-217. PubMed ID: 29570200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kernel-Based Microfluidic Constriction Assay for Tumor Sample Identification.
    Ren X; Ghassemi P; Kanaan YM; Naab T; Copeland RL; Dewitty RL; Kim I; Strobl JS; Agah M
    ACS Sens; 2018 Aug; 3(8):1510-1521. PubMed ID: 29979037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inertial Multi-Force Deformability Cytometry for High-Throughput, High-Accuracy, and High-Applicability Tumor Cell Mechanotyping.
    Chen Y; Ni C; Jiang L; Ni Z; Xiang N
    Small; 2024 Feb; 20(7):e2303962. PubMed ID: 37789502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical design of a microfluidic chip for probing mechanical properties of cells.
    Ye T; Shi H; Phan-Thien N; Lim CT; Li Y
    J Biomech; 2019 Feb; 84():103-112. PubMed ID: 30591204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new dimensionless index for evaluating cell stiffness-based deformability in microchannel.
    Tsai CH; Sakuma S; Arai F; Kaneko M
    IEEE Trans Biomed Eng; 2014 Apr; 61(4):1187-95. PubMed ID: 24658243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.