These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 33070008)

  • 1. Temporal modelling of beryllium oxide ceramics' real-time OSL for dosimetry with a superficial 140 kVp X-ray beam.
    Madden L; Santos A; Li E; Gowda R; Bezak E; Afshar V S; Rosenfeld A
    Phys Med; 2020 Dec; 80():17-22. PubMed ID: 33070008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of a real-time optically stimulated luminescence beryllium oxide (BeO) fibre-coupled dosimetry system with a superficial 140 kVp X-ray beam.
    Santos AMC; Gowda R; Bezak E; Afshar V S
    Phys Med; 2019 Sep; 65():167-171. PubMed ID: 31494370
    [TBL] [Abstract][Full Text] [Related]  

  • 3. OSL and TL techniques combined in a beryllium oxide detector to evaluate simultaneously accumulated and single doses.
    Malthez ALMC; Freitas MB; Yoshimura EM; Umisedo NK; Button VLSN
    Appl Radiat Isot; 2016 Apr; 110():155-159. PubMed ID: 26784853
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of a real-time BeO ceramic fiber-coupled luminescence dosimetry system for dose verification of high dose rate brachytherapy.
    Santos AM; Mohammadi M; Afshar V S
    Med Phys; 2015 Nov; 42(11):6349-56. PubMed ID: 26520726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Retrospective physical dosimetry in the Czech Republic: an overview of already established methods and recent research.
    Ekendahl D; Čemusová Z; Reimitz D; Vávra J
    Int J Radiat Biol; 2022; 98(5):890-899. PubMed ID: 34606411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-precision dosimetry for radiotherapy using the optically stimulated luminescence technique and thin Al2O3:C dosimeters.
    Yukihara EG; Yoshimura EM; Lindstrom TD; Ahmad S; Taylor KK; Mardirossian G
    Phys Med Biol; 2005 Dec; 50(23):5619-28. PubMed ID: 16306656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of radiation dose with BeO dosimeters using optically stimulated luminescence technique in radiotherapy applications.
    Şahin S; Güneş Tanır A; Meriç N; Aydınkarahaliloğlu E
    Appl Radiat Isot; 2015 Sep; 103():31-6. PubMed ID: 26046521
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermally and optically stimulated luminescence properties of BeO dosimeter with double TL peak in the main dosimetric region.
    Aşlar E; Şahiner E; Polymeris GS; Meriç N
    Appl Radiat Isot; 2021 Apr; 170():109635. PubMed ID: 33607380
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bank of calibrated BeO ceramic dosimeters for TSEE and TL.
    Gammage RB; Cheka JS
    Health Phys; 1976 Mar; 30(3):311-3. PubMed ID: 1254486
    [No Abstract]   [Full Text] [Related]  

  • 10. Characterization of OSL dosimeters used at the ELI-beamlines laser-driven accelerator facility.
    Cimmino A; Horváth D; Olšovcová V; Stránský V; Truneček R; Versaci R
    J Radiol Prot; 2021 Dec; 41(4):. PubMed ID: 34265743
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Near-real-time radiotherapy dosimetry using optically stimulated luminescence of Al2O3:C: mathematical models and preliminary results.
    Gaza R; McKeever SW; Akselrod MS
    Med Phys; 2005 Apr; 32(4):1094-102. PubMed ID: 15895594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Energy dependence measurement of small-type optically stimulated luminescence (OSL) dosimeter by means of characteristic X-rays induced with general diagnostic X-ray equipment].
    Takegami K
    Igaku Butsuri; 2017; 37(3):201. PubMed ID: 29415967
    [No Abstract]   [Full Text] [Related]  

  • 13. Investigation of a BeO-based optically stimulated luminescence dosemeter.
    Sommer M; Henniger J
    Radiat Prot Dosimetry; 2006; 119(1-4):394-7. PubMed ID: 16735572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of multislice computed tomography dose index (CTDI) using optically stimulated luminescence technology.
    Ruan C; Yukihara EG; Clouse WJ; Gasparian PB; Ahmad S
    Med Phys; 2010 Jul; 37(7):3560-8. PubMed ID: 20831063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of an X-Ray Dose Profile Derived from an Optically Stimulated Luminescent Dosimeter during Computed Tomographic Fluoroscopy.
    Hasegawa H; Sato M; Tanaka H
    PLoS One; 2015; 10(7):e0132154. PubMed ID: 26151914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of nanoDot optically stimulated luminescence detectors and high-sensitivity MCP-N thermoluminescent detectors in the 40-300 kVp energy range.
    Poirier Y; Kuznetsova S; Villarreal-Barajas JE
    Med Phys; 2018 Jan; 45(1):402-413. PubMed ID: 29164632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [EPR and TL measurements of BeO "Termalox 995" irradiated with photons].
    Azzoni CB; Giroletti E; Rovera S
    Radiol Med; 1985; 71(7-8):521-4. PubMed ID: 3001845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characteristics of an OSLD in the diagnostic energy range.
    Al-Senan RM; Hatab MR
    Med Phys; 2011 Jul; 38(7):4396-405. PubMed ID: 21859040
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance of optically stimulated luminescence Al₂O₃ dosimeter for low doses of diagnostic energy X-rays.
    Lim CS; Lee SB; Jin GH
    Appl Radiat Isot; 2011 Oct; 69(10):1486-9. PubMed ID: 21723134
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relative TL and OSL efficiency to protons of various dosimetric materials.
    Sądel M; Bilski P; Swakoń J
    Radiat Prot Dosimetry; 2014 Oct; 161(1-4):112-5. PubMed ID: 24036656
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.