BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 33070097)

  • 1. ElectrochemSENSE: A platform towards field deployable direct on-produce glyphosate detection.
    Dhamu VN; Prasad S
    Biosens Bioelectron; 2020 Dec; 170():112609. PubMed ID: 33070097
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Portable Pesticide Electrochem-sensor: A Label-Free Detection of Glyphosate in Human Urine.
    Poudyal DC; Dhamu VN; Samson M; Muthukumar S; Prasad S
    Langmuir; 2022 Feb; 38(5):1781-1790. PubMed ID: 35089037
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of Highly Sensitive Immunosensor Based on Optical Waveguide Light-Mode Spectroscopy (OWLS) Technique for the Detection of the Herbicide Active Ingredient Glyphosate.
    Majer-Baranyi K; Szendrei F; Adányi N; Székács A
    Biosensors (Basel); 2023 Jul; 13(8):. PubMed ID: 37622857
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pesticide analytical screening system (PASS): A novel electrochemical system for multiplex screening of glyphosate and chlorpyrifos in high-fat and low-fat food matrices.
    Poudyal DC; Dhamu VN; Samson M; Muthukumar S; Prasad S
    Food Chem; 2023 Jan; 400():134075. PubMed ID: 36075171
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymatic Laser-Induced Graphene Biosensor for Electrochemical Sensing of the Herbicide Glyphosate.
    Johnson ZT; Jared N; Peterson JK; Li J; Smith EA; Walper SA; Hooe SL; Breger JC; Medintz IL; Gomes C; Claussen JC
    Glob Chall; 2022 Sep; 6(9):2200057. PubMed ID: 36176938
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monitoring of glyphosate-DNA interaction and synergistic genotoxic effect of glyphosate and 2,4-dichlorophenoxyacetic acid using an electrochemical biosensor.
    Congur G
    Environ Pollut; 2021 Feb; 271():116360. PubMed ID: 33412448
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coca and poppy eradication in Colombia: environmental and human health assessment of aerially applied glyphosate.
    Solomon KR; Anadón A; Carrasquilla G; Cerdeira AL; Marshall J; Sanin LH
    Rev Environ Contam Toxicol; 2007; 190():43-125. PubMed ID: 17432331
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amperometric biosensor for glyphosate based on the inhibition of tyrosinase conjugated to carbon nano-onions in a chitosan matrix on a screen-printed electrode.
    Sok V; Fragoso A
    Mikrochim Acta; 2019 Jul; 186(8):569. PubMed ID: 31338611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering a fluorescence biosensor for the herbicide glyphosate.
    N'Guetta PY; Fink MM; Rizk SS
    Protein Eng Des Sel; 2020 Sep; 33():. PubMed ID: 32930799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glyphosate Determination by Coupling an Immuno-Magnetic Assay with Electrochemical Sensors.
    Bettazzi F; Romero Natale A; Torres E; Palchetti I
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30200562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immunoassay for rapid on-site detection of glyphosate herbicide.
    Viirlaid E; Ilisson M; Kopanchuk S; Mäeorg U; Rinken A; Rinken T
    Environ Monit Assess; 2019 Jul; 191(8):507. PubMed ID: 31342281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of glyphosate-based herbicide formulations on Lemna minor, a non-target species.
    Sikorski Ł; Baciak M; Bęś A; Adomas B
    Aquat Toxicol; 2019 Apr; 209():70-80. PubMed ID: 30739875
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct glyphosate soil monitoring at the triazine-based covalent organic framework with the theoretical study of sensing principle.
    Knežević S; Jovanović NT; Vlahović F; Ajdačić V; Costache V; Vidić J; Opsenica I; Stanković D
    Chemosphere; 2023 Nov; 341():139930. PubMed ID: 37659506
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial and temporal trends and flow dynamics of glyphosate and other pesticides within an agricultural watershed in Argentina.
    Pérez DJ; Okada E; De Gerónimo E; Menone ML; Aparicio VC; Costa JL
    Environ Toxicol Chem; 2017 Dec; 36(12):3206-3216. PubMed ID: 28631831
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of an enzyme-linked immunosorbent assay for the detection of glyphosate.
    Clegg BS; Stephenson GR; Hall JC
    J Agric Food Chem; 1999 Dec; 47(12):5031-7. PubMed ID: 10606568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Delayed degradation in soil of foliar herbicides glyphosate and sulcotrione previously absorbed by plants: consequences on herbicide fate and risk assessment.
    Doublet J; Mamy L; Barriuso E
    Chemosphere; 2009 Oct; 77(4):582-9. PubMed ID: 19625069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Questions concerning the potential impact of glyphosate-based herbicides on amphibians.
    Wagner N; Reichenbecher W; Teichmann H; Tappeser B; Lötters S
    Environ Toxicol Chem; 2013 Aug; 32(8):1688-700. PubMed ID: 23637092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement and modelling of glyphosate fate compared with that of herbicides replaced as a result of the introduction of glyphosate-resistant oilseed rape.
    Mamy L; Gabrielle B; Barriuso E
    Pest Manag Sci; 2008 Mar; 64(3):262-75. PubMed ID: 18205189
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hormetic effects of glyphosate on plants.
    Brito IP; Tropaldi L; Carbonari CA; Velini ED
    Pest Manag Sci; 2018 May; 74(5):1064-1070. PubMed ID: 28094904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Honeybee and consumer's exposure and risk characterisation to glyphosate-based herbicide (GBH) and its degradation product (AMPA): Residues in beebread, wax, and honey.
    El Agrebi N; Tosi S; Wilmart O; Scippo ML; de Graaf DC; Saegerman C
    Sci Total Environ; 2020 Feb; 704():135312. PubMed ID: 31780165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.