BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 33070205)

  • 1. Derivation of proliferative islet1-positive cells during metamorphosis and wound response in Xenopus.
    Umezawa S; Miyakawa M; Yamaura T; Kubo H; Kinoshita T
    Histochem Cell Biol; 2021 Jan; 155(1):133-143. PubMed ID: 33070205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. miR-128 regulates non-myocyte hyperplasia, deposition of extracellular matrix and Islet1 expression during newt cardiac regeneration.
    Witman N; Heigwer J; Thaler B; Lui WO; Morrison JI
    Dev Biol; 2013 Nov; 383(2):253-63. PubMed ID: 24055866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptional regulatory elements of hif1α in a distal locus of islet1 in Xenopus laevis.
    Miyakawa M; Katada T; Numa Y; Kinoshita T
    Comp Biochem Physiol B Biochem Mol Biol; 2021; 255():110598. PubMed ID: 33785414
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Islet-1 immunoreactivity in the developing retina of Xenopus laevis.
    Álvarez-Hernán G; Bejarano-Escobar R; Morona R; González A; Martín-Partido G; Francisco-Morcillo J
    ScientificWorldJournal; 2013; 2013():740420. PubMed ID: 24348185
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stage-dependent cardiac regeneration in
    Marshall LN; Vivien CJ; Girardot F; Péricard L; Scerbo P; Palmier K; Demeneix BA; Coen L
    Proc Natl Acad Sci U S A; 2019 Feb; 116(9):3614-3623. PubMed ID: 30755533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Critical role of phosphodiesterase 2A in mouse congenital heart defects.
    Assenza MR; Barbagallo F; Barrios F; Cornacchione M; Campolo F; Vivarelli E; Gianfrilli D; Auletta L; Soricelli A; Isidori AM; Lenzi A; Pellegrini M; Naro F
    Cardiovasc Res; 2018 May; 114(6):830-845. PubMed ID: 29409032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Islet1-expressing cardiac progenitor cells: a comparison across species.
    Pandur P; Sirbu IO; Kühl SJ; Philipp M; Kühl M
    Dev Genes Evol; 2013 Mar; 223(1-2):117-29. PubMed ID: 22526874
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regeneration of Xenopus laevis spinal cord requires Sox2/3 expressing cells.
    Muñoz R; Edwards-Faret G; Moreno M; Zuñiga N; Cline H; Larraín J
    Dev Biol; 2015 Dec; 408(2):229-43. PubMed ID: 25797152
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural retinal regeneration in the anuran amphibian Xenopus laevis post-metamorphosis: transdifferentiation of retinal pigmented epithelium regenerates the neural retina.
    Yoshii C; Ueda Y; Okamoto M; Araki M
    Dev Biol; 2007 Mar; 303(1):45-56. PubMed ID: 17184765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ISLET1-Dependent β-Catenin/Hedgehog Signaling Is Required for Outgrowth of the Lower Jaw.
    Li F; Fu G; Liu Y; Miao X; Li Y; Yang X; Zhang X; Yu D; Gan L; Qiu M; Chen Y; Zhang Z; Zhang Z
    Mol Cell Biol; 2017 Apr; 37(8):. PubMed ID: 28069742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cornifelin expression during Xenopus laevis metamorphosis and in response to spinal cord injury.
    Torruella-Gonzalez S; Slater PG; Lee-Liu D; Larraín J
    Gene Expr Patterns; 2022 Mar; 43():119234. PubMed ID: 35151892
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Islet-1 induces the differentiation of mesenchymal stem cells into cardiomyocyte-like cells through the regulation of Gcn5 and DNMT-1.
    Yi Q; Xu H; Yang K; Wang Y; Tan B; Tian J; Zhu J
    Mol Med Rep; 2017 May; 15(5):2511-2520. PubMed ID: 28447752
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Localization of β-Catenin and Islet in the Pelvic Fin Field in Zebrafish.
    Moriyama Y; Pratiwi HM; Ueda S; Tanaka M
    Zoolog Sci; 2019 Oct; 36(5):365-371. PubMed ID: 33319959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nkx6 proteins specify one zebrafish primary motoneuron subtype by regulating late islet1 expression.
    Hutchinson SA; Cheesman SE; Hale LA; Boone JQ; Eisen JS
    Development; 2007 May; 134(9):1671-7. PubMed ID: 17376808
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Slater PG; Palacios M; Larraín J
    Cold Spring Harb Protoc; 2021 Aug; 2021(8):. PubMed ID: 33782095
    [No Abstract]   [Full Text] [Related]  

  • 16. Recapitulation of developmental cardiogenesis governs the morphological and functional regeneration of adult newt hearts following injury.
    Witman N; Murtuza B; Davis B; Arner A; Morrison JI
    Dev Biol; 2011 Jun; 354(1):67-76. PubMed ID: 21457708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Wnt inhibitor Dkk1 is required for maintaining the normal cardiac differentiation program in Xenopus laevis.
    Guo Y; Dorn T; Kühl SJ; Linnemann A; Rothe M; Pfister AS; Vainio S; Laugwitz KL; Moretti A; Kühl M
    Dev Biol; 2019 May; 449(1):1-13. PubMed ID: 30797757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of gene expression endpoints in the context of a Xenopus laevis metamorphosis-based bioassay to detect thyroid hormone disruptors.
    Zhang F; Degitz SJ; Holcombe GW; Kosian PA; Tietge J; Veldhoen N; Helbing CC
    Aquat Toxicol; 2006 Jan; 76(1):24-36. PubMed ID: 16289343
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metamorphosis and the regenerative capacity of spinal cord axons in Xenopus laevis.
    Gibbs KM; Chittur SV; Szaro BG
    Eur J Neurosci; 2011 Jan; 33(1):9-25. PubMed ID: 21059114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of Thyroid Hormone Receptor in Amphibian Development.
    Fu L; Wen L; Shi YB
    Methods Mol Biol; 2018; 1801():247-263. PubMed ID: 29892830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.