These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 33070474)

  • 1. Effect of bioactive Biosilicate
    Marin CP; Santana GL; Robinson M; Willerth SM; Crovace MC; Zanotto ED
    J Biomed Mater Res A; 2021 Aug; 109(8):1293-1308. PubMed ID: 33070474
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioactive-glass ceramic with two crystalline phases (BioS-2P) for bone tissue engineering.
    Prado Ferraz E; Pereira Freitas G; Camuri Crovace M; Peitl O; Dutra Zanotto E; de Oliveira PT; Mateus Beloti M; Luiz Rosa A
    Biomed Mater; 2017 Aug; 12(4):045018. PubMed ID: 28573977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [A novel tissue-engineered bone constructed by using human adipose-derived stem cells and biomimetic calcium phosphate scaffold coprecipitated with bone morphogenetic protein-2].
    Jiang WR; Zhang X; Liu YS; Wu G; Ge YJ; Zhou YS
    Beijing Da Xue Xue Bao Yi Xue Ban; 2017 Feb; 49(1):6-15. PubMed ID: 28202997
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Promoted role of bone morphogenetic protein 2/7 heterodimer in the osteogenic differentiation of human adipose-derived stem cells].
    Zhang X; Liu YS; Lv LW; Chen T; Wu G; Zhou YS
    Beijing Da Xue Xue Bao Yi Xue Ban; 2016 Feb; 48(1):37-44. PubMed ID: 26885906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Osteogenic differentiation of human mesenchymal stem cells in 3-D Zr-Si organic-inorganic scaffolds produced by two-photon polymerization technique.
    Koroleva A; Deiwick A; Nguyen A; Schlie-Wolter S; Narayan R; Timashev P; Popov V; Bagratashvili V; Chichkov B
    PLoS One; 2015; 10(2):e0118164. PubMed ID: 25706270
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adipose- and bone marrow-derived mesenchymal stem cells display different osteogenic differentiation patterns in 3D bioactive glass-based scaffolds.
    Rath SN; Nooeaid P; Arkudas A; Beier JP; Strobel LA; Brandl A; Roether JA; Horch RE; Boccaccini AR; Kneser U
    J Tissue Eng Regen Med; 2016 Oct; 10(10):E497-E509. PubMed ID: 24357645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of bioactive glass particles on osteogenic differentiation of adipose-derived mesenchymal stem cells seeded on lactide and caprolactone based scaffolds.
    Larrañaga A; Alonso-Varona A; Palomares T; Rubio-Azpeitia E; Aldazabal P; Martin FJ; Sarasua JR
    J Biomed Mater Res A; 2015 Dec; 103(12):3815-24. PubMed ID: 26074489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioactive glass ions induce efficient osteogenic differentiation of human adipose stem cells encapsulated in gellan gum and collagen type I hydrogels.
    Vuornos K; Ojansivu M; Koivisto JT; Häkkänen H; Belay B; Montonen T; Huhtala H; Kääriäinen M; Hupa L; Kellomäki M; Hyttinen J; Ihalainen JA; Miettinen S
    Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():905-918. PubMed ID: 30889765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Osteogenic medium is superior to growth factors in differentiation of human adipose stem cells towards bone-forming cells in 3D culture.
    Tirkkonen L; Haimi S; Huttunen S; Wolff J; Pirhonen E; Sándor GK; Miettinen S
    Eur Cell Mater; 2013 Jan; 25():144-58. PubMed ID: 23361609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human adipose-derived stem cells as future tools in tissue regeneration: osteogenic differentiation and cell-scaffold interaction.
    De Girolamo L; Sartori MF; Arrigoni E; Rimondini L; Albisetti W; Weinstein RL; Brini AT
    Int J Artif Organs; 2008 Jun; 31(6):467-79. PubMed ID: 18609499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioactive glass-ceramic for bone tissue engineering: an in vitro and in vivo study focusing on osteoclasts.
    Bighetti-Trevisan RL; Souza ATP; Tosin IW; Bueno NP; Crovace MC; Beloti MM; Rosa AL; Ferraz EP
    Braz Oral Res; 2022; 36():e022. PubMed ID: 35293496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new nanocomposite scaffold based on polyurethane and clay nanoplates for osteogenic differentiation of human mesenchymal stem cells in vitro.
    Norouz F; Halabian R; Salimi A; Ghollasi M
    Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109857. PubMed ID: 31349533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of zinc-releasing three-dimensional bioactive glass scaffolds and their effect on human adipose stem cell proliferation and osteogenic differentiation.
    Haimi S; Gorianc G; Moimas L; Lindroos B; Huhtala H; Räty S; Kuokkanen H; Sándor GK; Schmid C; Miettinen S; Suuronen R
    Acta Biomater; 2009 Oct; 5(8):3122-31. PubMed ID: 19428318
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Suppression of SPRY4 Promotes Osteogenic Differentiation and Bone Formation of Mesenchymal Stem Cell.
    Park S; Arai Y; Kim BJ; Bello A; Ashraf S; Park H; Park KS; Lee SH
    Tissue Eng Part A; 2019 Dec; 25(23-24):1646-1657. PubMed ID: 30982407
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydroxylapatite-collagen hybrid scaffold induces human adipose-derived mesenchymal stem cells to osteogenic differentiation in vitro and bone regrowth in patients.
    Mazzoni E; D'Agostino A; Iaquinta MR; Bononi I; Trevisiol L; Rotondo JC; Patergnani S; Giorgi C; Gunson MJ; Arnett GW; Nocini PF; Tognon M; Martini F
    Stem Cells Transl Med; 2020 Mar; 9(3):377-388. PubMed ID: 31834992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigating the mechanical, physiochemical and osteogenic properties in gelatin-chitosan-bioactive nanoceramic composite scaffolds for bone tissue regeneration: In vitro and in vivo.
    Dasgupta S; Maji K; Nandi SK
    Mater Sci Eng C Mater Biol Appl; 2019 Jan; 94():713-728. PubMed ID: 30423758
    [TBL] [Abstract][Full Text] [Related]  

  • 17. microRNA expression profiles and the potential competing endogenous RNA networks in NELL-1-induced human adipose-derived stem cell osteogenic differentiation.
    Yu L; Cen X; Xia K; Huang X; Sun W; Zhao Z; Liu J
    J Cell Biochem; 2020 Nov; 121(11):4623-4641. PubMed ID: 32065449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study of osteogenic differentiation of human adipose-derived stem cells (HASCs) on bacterial cellulose.
    Zang S; Zhuo Q; Chang X; Qiu G; Wu Z; Yang G
    Carbohydr Polym; 2014 Apr; 104():158-65. PubMed ID: 24607173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The stimulation of osteogenic differentiation of human adipose-derived stem cells by ionic products from akermanite dissolution via activation of the ERK pathway.
    Gu H; Guo F; Zhou X; Gong L; Zhang Y; Zhai W; Chen L; Cen L; Yin S; Chang J; Cui L
    Biomaterials; 2011 Oct; 32(29):7023-33. PubMed ID: 21705076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Promotion Effects of miR-375 on the Osteogenic Differentiation of Human Adipose-Derived Mesenchymal Stem Cells.
    Chen S; Zheng Y; Zhang S; Jia L; Zhou Y
    Stem Cell Reports; 2017 Mar; 8(3):773-786. PubMed ID: 28262546
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.