These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 33070533)

  • 1. Mechanisms underlying the generation of autonomorespiratory coupling amongst the respiratory central pattern generator, sympathetic oscillators, and cardiovagal premotoneurons.
    Ghali MGZ; Ghali GZ; Lima A; McDermott M; Glover E; Voglis S; Humphrey J; König MSS; Brem H; Uhlén P; Spetzler RF; Yasargil MG
    J Integr Neurosci; 2020 Sep; 19(3):521-560. PubMed ID: 33070533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms Contributing to the Generation of Mayer Waves.
    Ghali MGZ; Ghali GZ
    Front Neurosci; 2020; 14():395. PubMed ID: 32765203
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Midbrain control of breathing and blood pressure: The role of periaqueductal gray matter and mesencephalic collicular neuronal microcircuit oscillators.
    George Zaki Ghali M
    Eur J Neurosci; 2020 Oct; 52(8):3879-3902. PubMed ID: 32227408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Respiratory rhythm generation and pattern formation: oscillators and network mechanisms.
    Ghali MGZ
    J Integr Neurosci; 2019 Dec; 18(4):481-517. PubMed ID: 31912709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neurons in the Intermediate Reticular Nucleus Coordinate Postinspiratory Activity, Swallowing, and Respiratory-Sympathetic Coupling in the Rat.
    Toor RUAS; Sun QJ; Kumar NN; Le S; Hildreth CM; Phillips JK; McMullan S
    J Neurosci; 2019 Dec; 39(49):9757-9766. PubMed ID: 31666354
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Retraction: Ghali MGZ,
    Ghali MGZ; Ghali GZ; Lima A; McDermott M; Glover E; Voglis S; Humphrey J; König MSS; Brem H; Uhlén P; Spetzler RF; Yasargil MG;
    J Integr Neurosci; 2021 Jun; 20(2):527. PubMed ID: 34258955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coupling of respiratory and sympathetic activities in rats submitted to chronic intermittent hypoxia.
    Moraes DJ; Machado BH; Zoccal DB
    Prog Brain Res; 2014; 212():25-38. PubMed ID: 25194191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiological and pathophysiological interactions between the respiratory central pattern generator and the sympathetic nervous system.
    Molkov YI; Zoccal DB; Baekey DM; Abdala AP; Machado BH; Dick TE; Paton JF; Rybak IA
    Prog Brain Res; 2014; 212():1-23. PubMed ID: 25194190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Axonal projections of caudal ventrolateral medullary and medullary raphe neurons with activity correlated to the 10-Hz rhythm in sympathetic nerve discharge.
    Barman SM; Orer HS; Gebber GL
    J Neurophysiol; 1995 Dec; 74(6):2295-308. PubMed ID: 8747192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neurophysiological analysis of target-related sympathetic pathways--from animal to human: similarities and differences.
    Jänig W; Häbler HJ
    Acta Physiol Scand; 2003 Mar; 177(3):255-74. PubMed ID: 12608996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spinal genesis of Mayer waves.
    Ghali GZ; Zaki Ghali MG; Ghali EZ
    Neural Regen Res; 2020 Oct; 15(10):1821-1830. PubMed ID: 32246623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Retracted: Control of hypoglossal pre-inspiratory discharge.
    Ghali MGZ
    Exp Physiol; 2020 Aug; 105(8):1232-1255. PubMed ID: 32539192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Subgroups of rostral ventrolateral medullary and caudal medullary raphe neurons based on patterns of relationship to sympathetic nerve discharge and axonal projections.
    Barman SM; Gebber GL
    J Neurophysiol; 1997 Jan; 77(1):65-75. PubMed ID: 9120597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neurogenic hypertension and the secrets of respiration.
    Machado BH; Zoccal DB; Moraes DJA
    Am J Physiol Regul Integr Comp Physiol; 2017 Jun; 312(6):R864-R872. PubMed ID: 28438764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Respiratory-cardiovascular interactions.
    Fisher JP; Zera T; Paton JFR
    Handb Clin Neurol; 2022; 188():279-308. PubMed ID: 35965029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lateral tegmental field neurons of cat medulla: a potential source of basal sympathetic nerve discharge.
    Gebber GL; Barman SM
    J Neurophysiol; 1985 Dec; 54(6):1498-512. PubMed ID: 4087045
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemoreception and neuroplasticity in respiratory circuits.
    Barnett WH; Abdala AP; Paton JF; Rybak IA; Zoccal DB; Molkov YI
    Exp Neurol; 2017 Jan; 287(Pt 2):153-164. PubMed ID: 27240520
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Selective stimulations and lesions of the rat brain nuclei as the models for research of the human sleep pathology mechanisms].
    Šaponjić J
    Glas Srp Akad Nauka Med; 2011; (51):85-97. PubMed ID: 22165729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Presence of vasomotor and respiratory rhythms in the discharge of single medullary neurons involved in the regulation of cardiovascular system.
    Montano N; Gnecchi-Ruscone T; Porta A; Lombardi F; Malliani A; Barman SM
    J Auton Nerv Syst; 1996 Feb; 57(1-2):116-22. PubMed ID: 8867094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tonic sympathetic chemoreflex after blockade of respiratory rhythmogenesis in the rat.
    Koshiya N; Guyenet PG
    J Physiol; 1996 Mar; 491 ( Pt 3)(Pt 3):859-69. PubMed ID: 8815217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.