These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. A PDMS viscometer for assaying endoglucanase activity. Tang X; Zheng B Analyst; 2011 Mar; 136(6):1222-6. PubMed ID: 21243134 [TBL] [Abstract][Full Text] [Related]
7. A novel polydimethylsiloxane microfluidic viscometer fabricated using microwire-molding. Zou M; Cai S; Zhao Z; Chen L; Zhao Y; Fan X; Chen S Rev Sci Instrum; 2015 Oct; 86(10):104302. PubMed ID: 26520971 [TBL] [Abstract][Full Text] [Related]
8. Optimizing Sensitivity in a Fluid-Structure Interaction-Based Microfluidic Viscometer: A Multiphysics Simulation Study. Mustafa A; Ertas Uslu M; Tanyeri M Sensors (Basel); 2023 Nov; 23(22):. PubMed ID: 38005651 [TBL] [Abstract][Full Text] [Related]
9. Measurements of fluid viscosity using a miniature ball drop device. Tang JX Rev Sci Instrum; 2016 May; 87(5):054301. PubMed ID: 27250443 [TBL] [Abstract][Full Text] [Related]
10. Measurement of rheology of distiller's grain slurries using a helical impeller viscometer. Houchin TL; Hanley TR Appl Biochem Biotechnol; 2004; 113-116():723-32. PubMed ID: 15054288 [TBL] [Abstract][Full Text] [Related]
11. A highly accurate and consistent microfluidic viscometer for continuous blood viscosity measurement. Kang YJ; Yoon SY; Lee KH; Yang S Artif Organs; 2010 Nov; 34(11):944-9. PubMed ID: 20946281 [TBL] [Abstract][Full Text] [Related]
12. 3D printed microfluidic viscometer based on the co-flowing stream. Hong H; Song JM; Yeom E Biomicrofluidics; 2019 Jan; 13(1):014104. PubMed ID: 30867875 [TBL] [Abstract][Full Text] [Related]
13. Microfluidic Rheology: An Innovative Method for Viscosity Measurement of Gels and Various Pharmaceuticals. Vilimi Z; Pápay ZE; Basa B; Orekhova X; Kállai-Szabó N; Antal I Gels; 2024 Jul; 10(7):. PubMed ID: 39057487 [TBL] [Abstract][Full Text] [Related]
14. Viscometer using drag force measurements. Noël MH; Semin B; Hulin JP; Auradou H Rev Sci Instrum; 2011 Feb; 82(2):023909. PubMed ID: 21361613 [TBL] [Abstract][Full Text] [Related]
15. In vitro testing of artificial heart valves: comparison between Newtonian and non-Newtonian fluids. Pohl M; Wendt MO; Werner S; Koch B; Lerche D Artif Organs; 1996 Jan; 20(1):37-46. PubMed ID: 8645128 [TBL] [Abstract][Full Text] [Related]
16. Computational Evaluation of Suspended Microcantilever and Microfluidic Channel. Gavalas I; Fotiadis DI Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():1171-1174. PubMed ID: 31946102 [TBL] [Abstract][Full Text] [Related]
17. On the calibration of rotational instruments for the measurement of whole-blood viscosity. Black RA; How TV; Whittington RB Biorheology; 1986; 23(5):485-98. PubMed ID: 2958099 [TBL] [Abstract][Full Text] [Related]
18. A Rapid Capillary-Pressure Driven Micro-Channel to Demonstrate Newtonian Fluid Behavior of Zebrafish Blood at High Shear Rates. Lee J; Chou TC; Kang D; Kang H; Chen J; Baek KI; Wang W; Ding Y; Carlo DD; Tai YC; Hsiai TK Sci Rep; 2017 May; 7(1):1980. PubMed ID: 28512313 [TBL] [Abstract][Full Text] [Related]
19. Simultaneous Protein Adsorption and Viscosity Measurement using Micropillar-Enhanced Acoustic Wave (μPAW) Device for Pharmaceutical Applications. Esfahani IC; Tehrani NA; Ji S; Sun H J Pharm Sci; 2024 Sep; 113(9):2715-2722. PubMed ID: 38857644 [TBL] [Abstract][Full Text] [Related]
20. Development of a simple droplet-based microfluidic capillary viscometer for low-viscosity Newtonian fluids. DeLaMarre MF; Keyzer A; Shippy SA Anal Chem; 2015 May; 87(9):4649-57. PubMed ID: 25825941 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]