BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

366 related articles for article (PubMed ID: 33071055)

  • 21. An Antibacterial β-Lactone Kills Mycobacterium tuberculosis by Disrupting Mycolic Acid Biosynthesis.
    Lehmann J; Cheng TY; Aggarwal A; Park AS; Zeiler E; Raju RM; Akopian T; Kandror O; Sacchettini JC; Moody DB; Rubin EJ; Sieber SA
    Angew Chem Int Ed Engl; 2018 Jan; 57(1):348-353. PubMed ID: 29067779
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phenanthrolinic analogs of quinolones show antibacterial activity against M. tuberculosis.
    Coulibaly S; Cimino M; Ouattara M; Lecoutey C; Buchieri MV; Alonso-Rodriguez N; Briffotaux J; Mornico D; Gicquel B; Rochais C; Dallemagne P
    Eur J Med Chem; 2020 Dec; 207():112821. PubMed ID: 32950907
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Discovery of antitubercular 2,4-diphenyl-1H-imidazoles from chemical library repositioning and rational design.
    Pieroni M; Wan B; Zuliani V; Franzblau SG; Costantino G; Rivara M
    Eur J Med Chem; 2015 Jul; 100():44-9. PubMed ID: 26071857
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dissecting the antibacterial activity of oxadiazolone-core derivatives against Mycobacterium abscessus.
    Madani A; Mallick I; Guy A; Crauste C; Durand T; Fourquet P; Audebert S; Camoin L; Canaan S; Cavalier JF
    PLoS One; 2020; 15(9):e0238178. PubMed ID: 32946441
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Small organic molecules targeting the energy metabolism of Mycobacterium tuberculosis.
    Urban M; Šlachtová V; Brulíková L
    Eur J Med Chem; 2021 Feb; 212():113139. PubMed ID: 33422979
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Frontier of mycobacterium research--host vs. mycobacterium].
    Okada M; Shirakawa T
    Kekkaku; 2005 Sep; 80(9):613-29. PubMed ID: 16245793
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A new piperidinol derivative targeting mycolic acid transport in Mycobacterium abscessus.
    Dupont C; Viljoen A; Dubar F; Blaise M; Bernut A; Pawlik A; Bouchier C; Brosch R; Guérardel Y; Lelièvre J; Ballell L; Herrmann JL; Biot C; Kremer L
    Mol Microbiol; 2016 Aug; 101(3):515-29. PubMed ID: 27121350
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Prospects for development of new antituberculous drugs].
    Tomioka H
    Kekkaku; 2002 Aug; 77(8):573-84. PubMed ID: 12235850
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Altered drug efflux under iron deprivation unveils abrogated MmpL3 driven mycolic acid transport and fluidity in mycobacteria.
    Pal R; Hameed S; Fatima Z
    Biometals; 2019 Feb; 32(1):49-63. PubMed ID: 30430296
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Peptide deformylase--a promising therapeutic target for tuberculosis and antibacterial drug discovery.
    Sharma A; Khuller GK; Sharma S
    Expert Opin Ther Targets; 2009 Jul; 13(7):753-65. PubMed ID: 19530983
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Current status and future development of antitubercular chemotherapy.
    Kremer LS; Besra GS
    Expert Opin Investig Drugs; 2002 Aug; 11(8):1033-49. PubMed ID: 12150700
    [TBL] [Abstract][Full Text] [Related]  

  • 32. New approaches to target the mycolic acid biosynthesis pathway for the development of tuberculosis therapeutics.
    North EJ; Jackson M; Lee RE
    Curr Pharm Des; 2014; 20(27):4357-78. PubMed ID: 24245756
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In Vitro Anti-mycobacterial Activity of Three Medicinal Plants of Lamiaceae Family.
    Kazemian H; Heidari H; Yamchi JK; Zandi H; Taji A; Yazdani F; Hamzehloo G; Ghanavati R; Rahdar HA; Feizabadi MM
    Recent Pat Antiinfect Drug Discov; 2018; 13(3):240-245. PubMed ID: 29952265
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Isolation and characterization of nontuberculous mycobacteria from patients with pulmonary tuberculosis in Ghana.
    Otchere ID; Asante-Poku A; Osei-Wusu S; Aboagye SY; Yeboah-Manu D
    Int J Mycobacteriol; 2017; 6(1):70-75. PubMed ID: 28317808
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Recent progress in the drug development of coumarin derivatives as potent antituberculosis agents.
    Keri RS; Sasidhar BS; Nagaraja BM; Santos MA
    Eur J Med Chem; 2015 Jul; 100():257-69. PubMed ID: 26112067
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of inhibitors against Mycobacterium tuberculosis thiamin phosphate synthase, an important target for the development of anti-TB drugs.
    Khare G; Kar R; Tyagi AK
    PLoS One; 2011; 6(7):e22441. PubMed ID: 21818324
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Design of Novel Phosphopantetheine Adenylyltransferase Inhibitors: A Potential New Approach to Tackle Mycobacterium tuberculosis.
    Primi MC; Tavares MT; Klein LL; Izard T; Sant'Anna CMR; Franzblau SG; Ferreira EI
    Curr Top Med Chem; 2021; 21(13):1186-1197. PubMed ID: 34323186
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nontoxic Metal-Cyclam Complexes, a New Class of Compounds with Potency against Drug-Resistant Mycobacterium tuberculosis.
    Yu M; Nagalingam G; Ellis S; Martinez E; Sintchenko V; Spain M; Rutledge PJ; Todd MH; Triccas JA
    J Med Chem; 2016 Jun; 59(12):5917-21. PubMed ID: 27214150
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evidence for Inhibition of Topoisomerase 1A by Gold(III) Macrocycles and Chelates Targeting Mycobacterium tuberculosis and Mycobacterium abscessus.
    Gupta R; Rodrigues Felix C; Akerman MP; Akerman KJ; Slabber CA; Wang W; Adams J; Shaw LN; Tse-Dinh YC; Munro OQ; Rohde KH
    Antimicrob Agents Chemother; 2018 May; 62(5):. PubMed ID: 29483110
    [No Abstract]   [Full Text] [Related]  

  • 40. Targeting intracellular nontuberculous mycobacteria and
    Bartlett HP; Dawson CC; Glickman CM; Osborn DW; Evans CR; Garcia BJ; Frost LC; Cummings JE; Whittel N; Slayden RA; Holder JW
    Microbiol Spectr; 2024 May; 12(5):e0353423. PubMed ID: 38534149
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.