BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 33071121)

  • 1. Selectivity and competition in the chemical oxidation processes for a binary pharmaceutical system in treated sewage effluent.
    Farzaneh H; Loganathan K; Saththasivam J; McKay G
    Sci Total Environ; 2021 Apr; 765():142704. PubMed ID: 33071121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of pharmaceutical abatement in various water matrices by conventional ozonation, peroxone (O
    Wang H; Zhan J; Yao W; Wang B; Deng S; Huang J; Yu G; Wang Y
    Water Res; 2018 Mar; 130():127-138. PubMed ID: 29216480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pilot-scale evaluation of micropollutant abatements by conventional ozonation, UV/O
    Yao W; Ur Rehman SW; Wang H; Yang H; Yu G; Wang Y
    Water Res; 2018 Jul; 138():106-117. PubMed ID: 29574198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of the new Cl
    Sgroi M; Anumol T; Vagliasindi FGA; Snyder SA; Roccaro P
    Sci Total Environ; 2021 Apr; 765():142720. PubMed ID: 33572038
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of operational and water quality parameters on conventional ozonation and the advanced oxidation process O
    Bourgin M; Borowska E; Helbing J; Hollender J; Kaiser HP; Kienle C; McArdell CS; Simon E; von Gunten U
    Water Res; 2017 Oct; 122():234-245. PubMed ID: 28601791
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of contaminants of emerging concern from the supernatant of anaerobically digested sludge by O
    Moradi N; Vazquez CL; Hernandez HG; Brdjanovic D; van Loosdrecht MCM; Rincón FR
    Environ Res; 2023 Oct; 235():116597. PubMed ID: 37442255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A pilot plant study using conventional and advanced water treatment processes: Evaluating removal efficiency of indicator compounds representative of pharmaceuticals and personal care products.
    Zhang S; Gitungo S; Axe L; Dyksen JE; Raczko RF
    Water Res; 2016 Nov; 105():85-96. PubMed ID: 27598698
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal of pharmaceuticals from secondary effluents by an electro-peroxone process.
    Yao W; Wang X; Yang H; Yu G; Deng S; Huang J; Wang B; Wang Y
    Water Res; 2016 Jan; 88():826-835. PubMed ID: 26610192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison on removal performance of virus, antibiotic-resistant bacteria, cell-associated and cell-free antibiotic resistance genes, and indicator chemicals by ozone in the filtrated secondary effluent of a sewage treatment plant.
    Zhao B; Park K; Kondo D; Wada H; Nakada N; Nishimura F; Ihara M; Tanaka H
    J Hazard Mater; 2024 Mar; 465():133347. PubMed ID: 38150766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of AOPs at pilot scale: Energy costs for micro-pollutants oxidation, disinfection by-products formation and pathogens inactivation.
    Sgroi M; Snyder SA; Roccaro P
    Chemosphere; 2021 Jun; 273():128527. PubMed ID: 33268086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Degradation and mineralization of ofloxacin by ozonation and peroxone (O
    Chen H; Wang J
    Chemosphere; 2021 Apr; 269():128775. PubMed ID: 33162160
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Treatment of volatile organic chemicals on the EPA Contaminant Candidate List using ozonation and the O3/H2O2 advanced oxidation process.
    Chen WR; Sharpless CM; Linden KG; Suffet IH
    Environ Sci Technol; 2006 Apr; 40(8):2734-9. PubMed ID: 16683616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The promotions on radical formation and micropollutant degradation by the synergies between ozone and chemical reagents (synergistic ozonation): A review.
    Wu QY; Yang ZW; Du Y; Ouyang WY; Wang WL
    J Hazard Mater; 2021 Sep; 418():126327. PubMed ID: 34116271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organics removal in high strength petrochemical wastewater with combined microbubble-catalytic ozonation process.
    Jothinathan L; Cai QQ; Ong SL; Hu JY
    Chemosphere; 2021 Jan; 263():127980. PubMed ID: 33297029
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Study on removal of nitrobenzene in water by O3/H2O2].
    Ma J; Shi F
    Huan Jing Ke Xue; 2002 Sep; 23(5):67-71. PubMed ID: 12533929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using ultraviolet absorbance and color to assess pharmaceutical oxidation during ozonation of wastewater.
    Wert EC; Rosario-Ortiz FL; Snyder SA
    Environ Sci Technol; 2009 Jul; 43(13):4858-63. PubMed ID: 19673276
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficiency of ozonation and O
    Lee W; Choi S; Kim H; Lee W; Lee M; Son H; Lee C; Cho M; Lee Y
    J Hazard Mater; 2023 Jul; 454():131436. PubMed ID: 37146328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pharmaceuticals and organic pollution mitigation in reclamation osmosis brines by UV/H2O2 and ozone.
    Justo A; González O; Aceña J; Pérez S; Barceló D; Sans C; Esplugas S
    J Hazard Mater; 2013 Dec; 263 Pt 2():268-74. PubMed ID: 23768786
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of micropollutant abatement during homogeneous catalytic ozonation by a chemical kinetic model.
    Guo Y; Wang H; Wang B; Deng S; Huang J; Yu G; Wang Y
    Water Res; 2018 Oct; 142():383-395. PubMed ID: 29913384
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inactivation of Escherichia coli in fresh water with advanced oxidation processes based on the combination of O3, H2O2, and TiO2. Kinetic modeling.
    Rodríguez-Chueca J; Ormad Melero MP; Mosteo Abad R; Esteban Finol J; Ovelleiro Narvión JL
    Environ Sci Pollut Res Int; 2015 Jul; 22(13):10280-90. PubMed ID: 25703617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.