BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 33071285)

  • 1. The SUMO pathway in pancreatic cancer: insights and inhibition.
    Schneeweis C; Hassan Z; Schick M; Keller U; Schneider G
    Br J Cancer; 2021 Feb; 124(3):531-538. PubMed ID: 33071285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SUMO pathway inhibition targets an aggressive pancreatic cancer subtype.
    Biederstädt A; Hassan Z; Schneeweis C; Schick M; Schneider L; Muckenhuber A; Hong Y; Siegers G; Nilsson L; Wirth M; Dantes Z; Steiger K; Schunck K; Langston S; Lenhof HP; Coluccio A; Orben F; Slawska J; Scherger A; Saur D; Müller S; Rad R; Weichert W; Nilsson J; Reichert M; Schneider G; Keller U
    Gut; 2020 Aug; 69(8):1472-1482. PubMed ID: 32001555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Site-specific inhibition of the small ubiquitin-like modifier (SUMO)-conjugating enzyme Ubc9 selectively impairs SUMO chain formation.
    Wiechmann S; Gärtner A; Kniss A; Stengl A; Behrends C; Rogov VV; Rodriguez MS; Dötsch V; Müller S; Ernst A
    J Biol Chem; 2017 Sep; 292(37):15340-15351. PubMed ID: 28784659
    [TBL] [Abstract][Full Text] [Related]  

  • 4. c-Myc is targeted to the proteasome for degradation in a SUMOylation-dependent manner, regulated by PIAS1, SENP7 and RNF4.
    González-Prieto R; Cuijpers SA; Kumar R; Hendriks IA; Vertegaal AC
    Cell Cycle; 2015; 14(12):1859-72. PubMed ID: 25895136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SUMO Modification of PAF1/PD2 Enables PML Interaction and Promotes Radiation Resistance in Pancreatic Ductal Adenocarcinoma.
    Rauth S; Karmakar S; Shah A; Seshacharyulu P; Nimmakayala RK; Ganguly K; Bhatia R; Muniyan S; Kumar S; Dutta S; Lin C; Datta K; Batra SK; Ponnusamy MP
    Mol Cell Biol; 2021 Nov; 41(12):e0013521. PubMed ID: 34570619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. E2-mediated small ubiquitin-like modifier (SUMO) modification of thymine DNA glycosylase is efficient but not selective for the enzyme-product complex.
    Coey CT; Fitzgerald ME; Maiti A; Reiter KH; Guzzo CM; Matunis MJ; Drohat AC
    J Biol Chem; 2014 May; 289(22):15810-9. PubMed ID: 24753249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SUMOylation of ATF3 alters its transcriptional activity on regulation of TP53 gene.
    Wang CM; Brennan VC; Gutierrez NM; Wang X; Wang L; Yang WH
    J Cell Biochem; 2013 Mar; 114(3):589-98. PubMed ID: 22991139
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Fluorescent In Vitro Assay to Investigate Paralog-Specific SUMO Conjugation.
    Eisenhardt N; Chaugule VK; Pichler A
    Methods Mol Biol; 2016; 1475():67-78. PubMed ID: 27631798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sumoylation regulates EXO1 stability and processing of DNA damage.
    Bologna S; Altmannova V; Valtorta E; Koenig C; Liberali P; Gentili C; Anrather D; Ammerer G; Pelkmans L; Krejci L; Ferrari S
    Cell Cycle; 2015 Aug; 14(15):2439-50. PubMed ID: 26083678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of a new small ubiquitin-like modifier (SUMO)-interacting motif in the E3 ligase PIASy.
    Kaur K; Park H; Pandey N; Azuma Y; De Guzman RN
    J Biol Chem; 2017 Jun; 292(24):10230-10238. PubMed ID: 28455449
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation of specific inhibitors of SUMO-1- and SUMO-2/3-mediated protein-protein interactions using Affimer (Adhiron) technology.
    Hughes DJ; Tiede C; Penswick N; Tang AA; Trinh CH; Mandal U; Zajac KZ; Gaule T; Howell G; Edwards TA; Duan J; Feyfant E; McPherson MJ; Tomlinson DC; Whitehouse A
    Sci Signal; 2017 Nov; 10(505):. PubMed ID: 29138295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PIASγ controls stability and facilitates SUMO-2 conjugation to CoREST family of transcriptional co-repressors.
    Sáez JE; Arredondo C; Rivera C; Andrés ME
    Biochem J; 2018 Apr; 475(8):1441-1454. PubMed ID: 29555846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Small ubiquitin-like modifier 1-3 conjugation [corrected] is activated in human astrocytic brain tumors and is required for glioblastoma cell survival.
    Yang W; Wang L; Roehn G; Pearlstein RD; Ali-Osman F; Pan H; Goldbrunner R; Krantz M; Harms C; Paschen W
    Cancer Sci; 2013 Jan; 104(1):70-7. PubMed ID: 23078246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The CTCF insulator protein is posttranslationally modified by SUMO.
    MacPherson MJ; Beatty LG; Zhou W; Du M; Sadowski PD
    Mol Cell Biol; 2009 Feb; 29(3):714-25. PubMed ID: 19029252
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modification of papillomavirus E2 proteins by the small ubiquitin-like modifier family members (SUMOs).
    Wu YC; Roark AA; Bian XL; Wilson VG
    Virology; 2008 Sep; 378(2):329-38. PubMed ID: 18619639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SUMO pathway components as possible cancer biomarkers.
    Mattoscio D; Chiocca S
    Future Oncol; 2015; 11(11):1599-610. PubMed ID: 26043214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ZNF451 is a novel PML body- and SUMO-associated transcriptional coregulator.
    Karvonen U; Jääskeläinen T; Rytinki M; Kaikkonen S; Palvimo JJ
    J Mol Biol; 2008 Oct; 382(3):585-600. PubMed ID: 18656483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SUMOylation regulates polo-like kinase 1-interacting checkpoint helicase (PICH) during mitosis.
    Sridharan V; Park H; Ryu H; Azuma Y
    J Biol Chem; 2015 Feb; 290(6):3269-76. PubMed ID: 25564610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of a novel posttranslational modification in neuronal nitric oxide synthase by small ubiquitin-related modifier-1.
    Watanabe M; Itoh K
    Biochim Biophys Acta; 2011 Jul; 1814(7):900-7. PubMed ID: 21545853
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SUMO chains: polymeric signals.
    Vertegaal AC
    Biochem Soc Trans; 2010 Feb; 38(Pt 1):46-9. PubMed ID: 20074033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.