These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 33071435)

  • 1. Partial cycle operation of latent heat storage with finned tubes.
    Scharinger-Urschitz G; Schwarzmayr P; Walter H; Haider M
    Appl Energy; 2020 Dec; 280():115893. PubMed ID: 33071435
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Indoor solar thermal energy saving time with phase change material in a horizontal shell and finned-tube heat exchanger.
    Paria S; Sarhan AA; Goodarzi MS; Baradaran S; Rahmanian B; Yarmand H; Alavi MA; Kazi SN; Metselaar HS
    ScientificWorldJournal; 2015; 2015():291657. PubMed ID: 25879052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Melting Enhancement in a Triple-Tube Latent Heat Storage System with Sloped Fins.
    Mahmoud MZ; Mohammed HI; Mahdi JM; Bokov DO; Ben Khedher N; Alshammari NK; Talebizadehsardari P; Yaïci W
    Nanomaterials (Basel); 2021 Nov; 11(11):. PubMed ID: 34835917
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental investigation of thermal performance of vertical multitube cylindrical latent heat thermal energy storage systems.
    Shen G; Wang X; Yu J; Bin Y; Zhong S; Yang S; Wang J
    Environ Sci Pollut Res Int; 2024 Jul; 31(34):46447-46461. PubMed ID: 38190065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of Heat Transfer Enhancement in a Triple Tube Latent Heat Storage System Using Circular Fins with Inline and Staggered Arrangements.
    Sun X; Mohammed HI; Tiji ME; Mahdi JM; Majdi HS; Wang Z; Talebizadehsardari P; Yaïci W
    Nanomaterials (Basel); 2021 Oct; 11(10):. PubMed ID: 34685088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved Melting of Latent Heat Storage Using Fin Arrays with Non-Uniform Dimensions and Distinct Patterns.
    Najim FT; Mohammed HI; Al-Najjar HMT; Thangavelu L; Mahmoud MZ; Mahdi JM; Tiji ME; Yaïci W; Talebizadehsardari P
    Nanomaterials (Basel); 2022 Jan; 12(3):. PubMed ID: 35159751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal Energy Storage and Heat Transfer of Nano-Enhanced Phase Change Material (NePCM) in a Shell and Tube Thermal Energy Storage (TES) Unit with a Partial Layer of Eccentric Copper Foam.
    Ghalambaz M; Mehryan SAM; Ayoubloo KA; Hajjar A; El Kadri M; Younis O; Pour MS; Hulme-Smith C
    Molecules; 2021 Mar; 26(5):. PubMed ID: 33803388
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimum Placement of Heating Tubes in a Multi-Tube Latent Heat Thermal Energy Storage.
    Ghalambaz M; Mohammed HI; Naghizadeh A; Islam MS; Younis O; Mahdi JM; Chatroudi IS; Talebizadehsardari P
    Materials (Basel); 2021 Mar; 14(5):. PubMed ID: 33807894
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Thermal Charging Performance of Finned Conical Thermal Storage System Filled with Nano-Enhanced Phase Change Material.
    Ghalambaz M; Shirivand H; Ayoubloo KA; Mehryan SAM; Younis O; Talebizadehsardari P; Yaïci W
    Molecules; 2021 Mar; 26(6):. PubMed ID: 33799354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Numerical Investigation of a Melting Rate Enhancement inside a Thermal Energy Storage System of Finned Heat Pipe with Nano-Enhanced Phase Change Material.
    Jirawattanapanit A; Abderrahmane A; Mourad A; Guedri K; Younis O; Bouallegue B; Subkrajang K; Rajchakit G; Shah NA
    Nanomaterials (Basel); 2022 Jul; 12(15):. PubMed ID: 35893487
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced Heat Transfer for NePCM-Melting-Based Thermal Energy of Finned Heat Pipe.
    Ahmed SE; Abderrahmane A; Alotaibi S; Younis O; Almasri RA; Hussam WK
    Nanomaterials (Basel); 2021 Dec; 12(1):. PubMed ID: 35010079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental investigation and modelling of a laboratory-scale latent heat storage with cylindrical PCM capsules.
    Jančík P; Schmirler M; Hyhlík T; Bláha A; Sláma P; Devera J; Kouba J
    Sci Rep; 2021 Dec; 11(1):23267. PubMed ID: 34853405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pioneering heat transfer enhancements in latent thermal energy storage: Passive and active strategies unveiled.
    Rahman MA; Zairov R; Akylbekov N; Zhapparbergenov R; Hasnain SMM
    Heliyon; 2024 Oct; 10(19):e37981. PubMed ID: 39381105
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Melting phase change heat transfer in a quasi-petal tube thermal energy storage unit.
    Mehryan SAM; Raahemifar K; Ramezani SR; Hajjar A; Younis O; Talebizadeh Sardari P; Ghalambaz M
    PLoS One; 2021; 16(3):e0246972. PubMed ID: 33760813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A critical assessment of nanoparticles enhanced phase change materials (NePCMs) for latent heat energy storage applications.
    Amidu MA; Ali M; Alkaabi AK; Addad Y
    Sci Rep; 2023 May; 13(1):7829. PubMed ID: 37188733
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical Study of Heat Transfer Enhancement within Confined Shell and Tube Latent Heat Thermal Storage Microsystem Using Hexagonal PCMs.
    Maneengam A; Ahmed SE; Saeed AM; Abderrahmane A; Younis O; Guedri K; Alhazmi M; Weera W
    Micromachines (Basel); 2022 Jun; 13(7):. PubMed ID: 35888878
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving the melting performance in a triple-pipe latent heat storage system using hemispherical and quarter-spherical fins with a staggered arrangement.
    Abed AM; Mohammed HI; Patra I; Mahdi JM; Arshad A; Sivaraman R; Ibrahem RK; Al-Qrimli FA; Dhahbi S; Talebizadehsardari P
    Front Chem; 2022; 10():1018265. PubMed ID: 36304743
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Natural Microtubule-Encapsulated Phase-Change Material with Simultaneously High Latent Heat Capacity and Enhanced Thermal Conductivity.
    Song S; Zhao T; Zhu W; Qiu F; Wang Y; Dong L
    ACS Appl Mater Interfaces; 2019 Jun; 11(23):20828-20837. PubMed ID: 31117448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermophysical Characterization of MgCl₂·6H₂O, Xylitol and Erythritol as Phase Change Materials (PCM) for Latent Heat Thermal Energy Storage (LHTES).
    Höhlein S; König-Haagen A; Brüggemann D
    Materials (Basel); 2017 Apr; 10(4):. PubMed ID: 28772806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solidification Enhancement in a Multi-Tube Latent Heat Storage System for Efficient and Economical Production: Effect of Number, Position and Temperature of the Tubes.
    Li M; Mahdi JM; Mohammed HI; Bokov DO; Mahmoud MZ; Naghizadeh A; Talebizadehsardari P; Yaïci W
    Nanomaterials (Basel); 2021 Nov; 11(12):. PubMed ID: 34947559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.