These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. Growth control, structure, chemical state, and photoresponse of CuO-CdS core-shell heterostructure nanowires. El Mel AA; Buffière M; Bouts N; Gautron E; Tessier PY; Henzler K; Guttmann P; Konstantinidis S; Bittencourt C; Snyders R Nanotechnology; 2013 Jul; 24(26):265603. PubMed ID: 23732175 [TBL] [Abstract][Full Text] [Related]
9. Facile synthesis and enhanced microwave absorption properties of novel hierarchical heterostructures based on a Ni microsphere-CuO nano-rice core-shell composite. Zhao B; Shao G; Fan B; Zhao W; Zhang R Phys Chem Chem Phys; 2015 Feb; 17(8):6044-52. PubMed ID: 25639203 [TBL] [Abstract][Full Text] [Related]
10. CuO/Cu core/shell nanostructured photoconductive devices by hot water treatment and high pressure sputtering techniques. Al-Mayalee KH; Badraddin E; Watanabe F; Karabacak T Nanotechnology; 2020 Feb; 31(9):095204. PubMed ID: 31739297 [TBL] [Abstract][Full Text] [Related]
12. 2D In-Plane CuS/Bi Guo L; Zhang K; Han X; Zhao Q; Wang D; Fu F Nanomaterials (Basel); 2019 Aug; 9(8):. PubMed ID: 31405218 [TBL] [Abstract][Full Text] [Related]
13. CuO/ZnO core/shell heterostructure nanowire arrays: synthesis, optical property, and energy application. Zhao X; Wang P; Li B Chem Commun (Camb); 2010 Sep; 46(36):6768-70. PubMed ID: 20730160 [TBL] [Abstract][Full Text] [Related]
14. Fabrication and NO2 gas sensing performance of TeO2-core/CuO-shell heterostructure nanorod sensors. Park S; Kim S; Sun GJ; In Lee W; Kim KK; Lee C Nanoscale Res Lett; 2014; 9(1):638. PubMed ID: 25489289 [TBL] [Abstract][Full Text] [Related]
15. Diffusive Formation of Hollow Mesoporous Silica Shells from Core-Shell Composites: Insights from the Hydrogen Sulfide Capture Cycle of CuO@mSiO Fan B; Zhao W; Ghosh S; Mkhoyan KA; Tsapatsis M; Stein A Langmuir; 2020 Jun; 36(23):6540-6549. PubMed ID: 32434334 [TBL] [Abstract][Full Text] [Related]
16. Solar-Heating Li Q; Sun Q; Li Y; Wu T; Li S; Zhang H; Huang F ACS Appl Mater Interfaces; 2020 Apr; 12(17):19476-19482. PubMed ID: 32267143 [TBL] [Abstract][Full Text] [Related]
17. Ni-core CuO-shell fibers produced by electrospinning and electroplating as efficient photocathode materials for solar water splitting. Jo HS; Kim MW; Joshi B; Samuel E; Yoon H; Swihart MT; Yoon SS Nanoscale; 2018 May; 10(20):9720-9728. PubMed ID: 29762621 [TBL] [Abstract][Full Text] [Related]
18. WS Abid ; Sehrawat P; Julien CM; Islam SS ACS Appl Mater Interfaces; 2020 Sep; 12(35):39730-39744. PubMed ID: 32809799 [TBL] [Abstract][Full Text] [Related]
19. Silicon/Perovskite Core-Shell Heterojunctions with Light-Trapping Effect for Sensitive Self-Driven Near-Infrared Photodetectors. Liu JQ; Gao Y; Wu GA; Tong XW; Xie C; Luo LB; Liang L; Wu YC ACS Appl Mater Interfaces; 2018 Aug; 10(33):27850-27857. PubMed ID: 30058333 [TBL] [Abstract][Full Text] [Related]
20. Enhancement of the Si p-n diode NIR photoresponse by embedding β-FeSi2 nanocrystallites. Shevlyagin AV; Goroshko DL; Chusovitin EA; Galkin KN; Galkin NG; Gutakovskii AK Sci Rep; 2015 Oct; 5():14795. PubMed ID: 26434582 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]