These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 33071588)

  • 1. How old are dense-core vesicles residing in
    Kuznetsov IA; Kuznetsov AV
    Proc Math Phys Eng Sci; 2020 Sep; 476(2241):20200454. PubMed ID: 33071588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modelling transport and mean age of dense core vesicles in large axonal arbours.
    Kuznetsov IA; Kuznetsov AV
    Proc Math Phys Eng Sci; 2019 Aug; 475(2228):20190284. PubMed ID: 31534430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulating Reversibility of Dense Core Vesicles Capture in En Passant Boutons: Using Mathematical Modeling to Understand the Fate of Dense Core Vesicles in En Passant Boutons.
    Kuznetsov IA; Kuznetsov AV
    J Biomech Eng; 2018 May; 140(5):. PubMed ID: 29049515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation of a sudden drop-off in distal dense core vesicle concentration in Drosophila type II motoneuron terminals.
    Kuznetsov IA; Kuznetsov AV
    Int J Numer Method Biomed Eng; 2021 Dec; 37(12):e3523. PubMed ID: 34418891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Can an increase in neuropeptide production in the soma lead to DCV circulation in axon terminals with type III en passant boutons?
    Kuznetsov IA; Kuznetsov AV
    Math Biosci; 2015 Sep; 267():61-78. PubMed ID: 26122837
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuropeptide delivery to synapses by long-range vesicle circulation and sporadic capture.
    Wong MY; Zhou C; Shakiryanova D; Lloyd TE; Deitcher DL; Levitan ES
    Cell; 2012 Mar; 148(5):1029-38. PubMed ID: 22385966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling neuropeptide transport in various types of nerve terminals containing en passant boutons.
    Kuznetsov IA; Kuznetsov AV
    Math Biosci; 2015 Mar; 261():27-36. PubMed ID: 25514215
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activity Induces Fmr1-Sensitive Synaptic Capture of Anterograde Circulating Neuropeptide Vesicles.
    Cavolo SL; Bulgari D; Deitcher DL; Levitan ES
    J Neurosci; 2016 Nov; 36(46):11781-11787. PubMed ID: 27852784
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Loss of Huntingtin stimulates capture of retrograde dense-core vesicles to increase synaptic neuropeptide stores.
    Bulgari D; Deitcher DL; Levitan ES
    Eur J Cell Biol; 2017 Aug; 96(5):402-406. PubMed ID: 28129919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Limited distal organelles and synaptic function in extensive monoaminergic innervation.
    Tao J; Bulgari D; Deitcher DL; Levitan ES
    J Cell Sci; 2017 Aug; 130(15):2520-2529. PubMed ID: 28600320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A compartmental model of neuropeptide circulation and capture between the axon soma and nerve terminals.
    Kuznetsov IA; Kuznetsov AV
    Int J Numer Method Biomed Eng; 2013 May; 29(5):574-85. PubMed ID: 23418183
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Capture of Dense Core Vesicles at Synapses by JNK-Dependent Phosphorylation of Synaptotagmin-4.
    Bharat V; Siebrecht M; Burk K; Ahmed S; Reissner C; Kohansal-Nodehi M; Steubler V; Zweckstetter M; Ting JT; Dean C
    Cell Rep; 2017 Nov; 21(8):2118-2133. PubMed ID: 29166604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synaptic neuropeptide release by dynamin-dependent partial release from circulating vesicles.
    Wong MY; Cavolo SL; Levitan ES
    Mol Biol Cell; 2015 Jul; 26(13):2466-74. PubMed ID: 25904335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vesicle capture, not delivery, scales up neuropeptide storage in neuroendocrine terminals.
    Bulgari D; Zhou C; Hewes RS; Deitcher DL; Levitan ES
    Proc Natl Acad Sci U S A; 2014 Mar; 111(9):3597-601. PubMed ID: 24550480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synapsin Is Required for Dense Core Vesicle Capture and cAMP-Dependent Neuropeptide Release.
    Yu SC; Liewald JF; Shao J; Steuer Costa W; Gottschalk A
    J Neurosci; 2021 May; 41(19):4187-4201. PubMed ID: 33820857
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Secretory vesicle trafficking in awake and anaesthetized mice: differential speeds in axons versus synapses.
    Knabbe J; Nassal JP; Verhage M; Kuner T
    J Physiol; 2018 Aug; 596(16):3759-3773. PubMed ID: 29873393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Presynaptic ryanodine receptor-CamKII signaling is required for activity-dependent capture of transiting vesicles.
    Wong MY; Shakiryanova D; Levitan ES
    J Mol Neurosci; 2009 Feb; 37(2):146-50. PubMed ID: 18592416
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sentryn and SAD Kinase Link the Guided Transport and Capture of Dense Core Vesicles in
    Morrison LM; Edwards SL; Manning L; Stec N; Richmond JE; Miller KG
    Genetics; 2018 Nov; 210(3):925-946. PubMed ID: 30401764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rab2 drives axonal transport of dense core vesicles and lysosomal organelles.
    Lund VK; Lycas MD; Schack A; Andersen RC; Gether U; Kjaerulff O
    Cell Rep; 2021 Apr; 35(2):108973. PubMed ID: 33852866
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Maximal Fusion Capacity and Efficient Replenishment of the Dense Core Vesicle Pool in Hippocampal Neurons.
    Baginska U; Moro A; Toonen RF; Verhage M
    J Neurosci; 2023 Nov; 43(45):7616-7625. PubMed ID: 37852790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.