These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 33071614)

  • 1. Computational Identification of Lysine Glutarylation Sites Using Positive-Unlabeled Learning.
    Ju Z; Wang SY
    Curr Genomics; 2020 Apr; 21(3):204-211. PubMed ID: 33071614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FCCCSR_Glu: a semi-supervised learning model based on FCCCSR algorithm for prediction of glutarylation sites.
    Ning Q; Qi Z; Wang Y; Deng A; Chen C
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36168700
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Positive-Unlabeled Learning for Pupylation Sites Prediction.
    Jiang M; Cao JZ
    Biomed Res Int; 2016; 2016():4525786. PubMed ID: 27579315
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization and identification of lysine glutarylation based on intrinsic interdependence between positions in the substrate sites.
    Huang KY; Kao HJ; Hsu JB; Weng SL; Lee TY
    BMC Bioinformatics; 2019 Feb; 19(Suppl 13):384. PubMed ID: 30717647
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of lysine glutarylation sites by maximum relevance minimum redundancy feature selection.
    Ju Z; He JJ
    Anal Biochem; 2018 Jun; 550():1-7. PubMed ID: 29641975
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DeepDN_iGlu: prediction of lysine glutarylation sites based on attention residual learning method and DenseNet.
    Jia J; Sun M; Wu G; Qiu W
    Math Biosci Eng; 2023 Jan; 20(2):2815-2830. PubMed ID: 36899559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Novel Method for Identification of Glutarylation Sites Combining Borderline-SMOTE With Tomek Links Technique in Imbalanced Data.
    Ning Q; Zhao X; Ma Z
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(5):2632-2641. PubMed ID: 34236968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. iGlu_AdaBoost: Identification of Lysine Glutarylation Using the AdaBoost Classifier.
    Dou L; Li X; Zhang L; Xiang H; Xu L
    J Proteome Res; 2021 Jan; 20(1):191-201. PubMed ID: 33090794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RF-GlutarySite: a random forest based predictor for glutarylation sites.
    Al-Barakati HJ; Saigo H; Newman RH; Kc DB
    Mol Omics; 2019 Jun; 15(3):189-204. PubMed ID: 31025681
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deepro-Glu: combination of convolutional neural network and Bi-LSTM models using ProtBert and handcrafted features to identify lysine glutarylation sites.
    Wang X; Ding Z; Wang R; Lin X
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36653898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EPuL: An Enhanced Positive-Unlabeled Learning Algorithm for the Prediction of Pupylation Sites.
    Nan X; Bao L; Zhao X; Zhao X; Sangaiah AK; Wang GG; Ma Z
    Molecules; 2017 Sep; 22(9):. PubMed ID: 28872627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. iGluK-Deep: computational identification of lysine glutarylation sites using deep neural networks with general pseudo amino acid compositions.
    Naseer S; Ali RF; Khan YD; Dominic PDD
    J Biomol Struct Dyn; 2022; 40(22):11691-11704. PubMed ID: 34396935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. iGlu-Lys: A Predictor for Lysine Glutarylation Through Amino Acid Pair Order Features.
    Xu Y; Yang Y; Ding J; Li C
    IEEE Trans Nanobioscience; 2018 Oct; 17(4):394-401. PubMed ID: 29994125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ProtTrans-Glutar: Incorporating Features From Pre-trained Transformer-Based Models for Predicting Glutarylation Sites.
    Indriani F; Mahmudah KR; Purnama B; Satou K
    Front Genet; 2022; 13():885929. PubMed ID: 35711929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functions and Mechanisms of Lysine Glutarylation in Eukaryotes.
    Xie L; Xiao Y; Meng F; Li Y; Shi Z; Qian K
    Front Cell Dev Biol; 2021; 9():667684. PubMed ID: 34249920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accurate in silico identification of protein succinylation sites using an iterative semi-supervised learning technique.
    Zhao X; Ning Q; Chai H; Ma Z
    J Theor Biol; 2015 Jun; 374():60-5. PubMed ID: 25843215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting lysine glycation sites using bi-profile bayes feature extraction.
    Ju Z; Sun J; Li Y; Wang L
    Comput Biol Chem; 2017 Dec; 71():98-103. PubMed ID: 29040908
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accurately Predicting Glutarylation Sites Using Sequential Bi-Peptide-Based Evolutionary Features.
    Arafat ME; Ahmad MW; Shovan SM; Dehzangi A; Dipta SR; Hasan MAM; Taherzadeh G; Shatabda S; Sharma A
    Genes (Basel); 2020 Aug; 11(9):. PubMed ID: 32878321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep Neural Network Framework Based on Word Embedding for Protein Glutarylation Sites Prediction.
    Liu CM; Ta VD; Le NQK; Tadesse DA; Shi C
    Life (Basel); 2022 Aug; 12(8):. PubMed ID: 36013392
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of Protein Lysine Acylation by Integrating Primary Sequence Information with Multiple Functional Features.
    Du Y; Zhai Z; Li Y; Lu M; Cai T; Zhou B; Huang L; Wei T; Li T
    J Proteome Res; 2016 Dec; 15(12):4234-4244. PubMed ID: 27774790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.