BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 33071708)

  • 1. 3D printing of a biocompatible double network elastomer with digital control of mechanical properties.
    Wang P; Berry DB; Song Z; Kiratitanaporn W; Schimelman J; Moran A; He F; Xi B; Cai S; Chen S
    Adv Funct Mater; 2020 Apr; 30(14):. PubMed ID: 33071708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-Dimensional Printing of Poly(glycerol sebacate) Acrylate Scaffolds
    Wu YL; D'Amato AR; Yan AM; Wang RQ; Ding X; Wang Y
    ACS Appl Bio Mater; 2020 Nov; 3(11):7575-7588. PubMed ID: 35019498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D printing and characterization of a soft and biostable elastomer with high flexibility and strength for biomedical applications.
    Bachtiar EO; Erol O; Millrod M; Tao R; Gracias DH; Romer LH; Kang SH
    J Mech Behav Biomed Mater; 2020 Apr; 104():103649. PubMed ID: 32174407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study of Physical and Degradation Properties of 3D-Printed Biodegradable, Photocurable Copolymers, PGSA-
    Chen JY; Hwang JV; Ao-Ieong WS; Lin YC; Hsieh YK; Cheng YL; Wang J
    Polymers (Basel); 2018 Nov; 10(11):. PubMed ID: 30961188
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Digital light 4D printing of bioresorbable shape memory elastomers for personalized biomedical implantation.
    Mahjoubnia A; Cai D; Wu Y; King SD; Torkian P; Chen AC; Talaie R; Chen SY; Lin J
    Acta Biomater; 2024 Mar; 177():165-177. PubMed ID: 38354873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Effect of Heat Treatment toward Glycerol-Based, Photocurable Polymeric Scaffold: Mechanical, Degradation and Biocompatibility.
    Ao-Ieong WS; Chien ST; Jiang WC; Yet SF; Wang J
    Polymers (Basel); 2021 Jun; 13(12):. PubMed ID: 34198515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D printing a biocompatible elastomer for modeling muscle regeneration after volumetric muscle loss.
    Kiratitanaporn W; Berry DB; Mudla A; Fried T; Lao A; Yu C; Hao N; Ward SR; Chen S
    Biomater Adv; 2022 Nov; 142():213171. PubMed ID: 36341746
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The selection of photoinitiators for photopolymerization of biodegradable polymers and its application in digital light processing additive manufacturing.
    Wang CC; Chen JY; Wang J
    J Biomed Mater Res A; 2022 Jan; 110(1):204-216. PubMed ID: 34397160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of 3D-Printed, Biodegradable, Conductive PGSA Composites for Nerve Tissue Regeneration.
    Huang WJ; Wang J
    Macromol Biosci; 2023 Mar; 23(3):e2200470. PubMed ID: 36525352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Printability of Double Network Alginate-Based Hydrogel for 3D Bio-Printed Complex Structures.
    Greco I; Miskovic V; Varon C; Marraffa C; Iorio CS
    Front Bioeng Biotechnol; 2022; 10():896166. PubMed ID: 35875487
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure-Processing-Property Relationships of 3D Printed Porous Polymeric Materials.
    Cipriani CE; Ha T; Martinez Defilló OB; Myneni M; Wang Y; Benjamin CC; Wang J; Pentzer EB; Wei P
    ACS Mater Au; 2021 Sep; 1(1):69-80. PubMed ID: 36855618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D Printing of Biocompatible Shape-Memory Double Network Hydrogels.
    Chen J; Huang J; Hu Y
    ACS Appl Mater Interfaces; 2021 Mar; 13(11):12726-12734. PubMed ID: 33336570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Voxel Design of Grayscale DLP 3D-Printed Soft Robots.
    Zhang M; Fan X; Dong L; Jiang C; Weeger O; Zhou K; Wang D
    Adv Sci (Weinh); 2024 May; ():e2309932. PubMed ID: 38769665
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D Printing a Mechanically-Tunable Acrylate Resin on a Commercial DLP-SLA Printer.
    Borrello J; Nasser P; Iatridis J; Costa KD
    Addit Manuf; 2018 Oct; 23():374-380. PubMed ID: 31106119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Slide-Ring Structure-Based Double-Network Hydrogel with Enhanced Stretchability and Toughness for 3D-Bio-Printing and Its Potential Application as Artificial Small-Diameter Blood Vessels.
    Liu Y; Zhang Y; An Z; Zhao H; Zhang L; Cao Y; Mansoorianfar M; Liu X; Pei R
    ACS Appl Bio Mater; 2021 Dec; 4(12):8597-8606. PubMed ID: 35005952
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Resolution 3D Printing of Stretchable Hydrogel Structures Using Optical Projection Lithography.
    Kunwar P; Jannini AVS; Xiong Z; Ransbottom MJ; Perkins JS; Henderson JH; Hasenwinkel JM; Soman P
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):1640-1649. PubMed ID: 31833757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A self-healing hydrogel and injectable cryogel of gelatin methacryloyl-polyurethane double network for 3D printing.
    Cheng QP; Hsu SH
    Acta Biomater; 2023 Jul; 164():124-138. PubMed ID: 37088162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Effects of Polyaniline Nanofibers and Graphene Flakes on the Electrical Properties and Mechanical Properties of ABS-like Resin Composites Obtained by DLP 3D Printing.
    Jang S; Cho S
    Polymers (Basel); 2023 Jul; 15(14):. PubMed ID: 37514469
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D Printing of Conductive Hydrogel-Elastomer Hybrids for Stretchable Electronics.
    Zhu H; Hu X; Liu B; Chen Z; Qu S
    ACS Appl Mater Interfaces; 2021 Dec; 13(49):59243-59251. PubMed ID: 34870967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional printing of poly(glycerol sebacate fumarate) gadodiamide-poly(ethylene glycol) diacrylate structures and characterization of mechanical properties for soft tissue applications.
    Ravi P; Wright J; Shiakolas PS; Welch TR
    J Biomed Mater Res B Appl Biomater; 2019 Apr; 107(3):664-671. PubMed ID: 30096218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.