BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 33072028)

  • 1. Microbial Oxidation of Arsenite: Regulation, Chemotaxis, Phosphate Metabolism and Energy Generation.
    Shi K; Wang Q; Wang G
    Front Microbiol; 2020; 11():569282. PubMed ID: 33072028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of phosphate on toxicity and bioaccumulation of arsenic in a soil isolate of microalga Chlorella sp.
    Bahar MM; Megharaj M; Naidu R
    Environ Sci Pollut Res Int; 2016 Feb; 23(3):2663-8. PubMed ID: 26438364
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functions and Unique Diversity of Genes and Microorganisms Involved in Arsenite Oxidation from the Tailings of a Realgar Mine.
    Zeng XC; E G; Wang J; Wang N; Chen X; Mu Y; Li H; Yang Y; Liu Y; Wang Y
    Appl Environ Microbiol; 2016 Dec; 82(24):7019-7029. PubMed ID: 27663031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphate starvation response controls genes required to synthesize the phosphate analog arsenate.
    Wang Q; Kang YS; Alowaifeer A; Shi K; Fan X; Wang L; Jetter J; Bothner B; Wang G; McDermott TR
    Environ Microbiol; 2018 May; 20(5):1782-1793. PubMed ID: 29575522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Arsenite Oxidation Potential of Native Microbial Communities from Arsenic-Rich Freshwaters.
    Fazi S; Crognale S; Casentini B; Amalfitano S; Lotti F; Rossetti S
    Microb Ecol; 2016 Jul; 72(1):25-35. PubMed ID: 27090902
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arsenite oxidation regulator AioR regulates bacterial chemotaxis towards arsenite in Agrobacterium tumefaciens GW4.
    Shi K; Fan X; Qiao Z; Han Y; McDermott TR; Wang Q; Wang G
    Sci Rep; 2017 Mar; 7():43252. PubMed ID: 28256605
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptation of Microbial Communities to Environmental Arsenic and Selection of Arsenite-Oxidizing Bacteria From Contaminated Groundwaters.
    Zecchin S; Crognale S; Zaccheo P; Fazi S; Amalfitano S; Casentini B; Callegari M; Zanchi R; Sacchi GA; Rossetti S; Cavalca L
    Front Microbiol; 2021; 12():634025. PubMed ID: 33815317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlling microbial arsenite oxidation and mobilization in arsenite-adsorbed iron minerals: The Influence of pH conditions and mineralogical composition.
    Cai X; Zhang Z; Yin N; Lu W; Du H; Yang M; Cui L; Chen S; Cui Y
    J Hazard Mater; 2022 Jul; 433():128778. PubMed ID: 35358812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of arsenic on the biofilm formations of arsenite-oxidizing bacteria.
    Zeng XC; He Z; Chen X; Cao QAD; Li H; Wang Y
    Ecotoxicol Environ Saf; 2018 Dec; 165():1-10. PubMed ID: 30173020
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genomic and physiological characterization of an antimony and arsenite-oxidizing bacterium Roseomonas rhizosphaerae.
    Sun LN; Guo B; Lyu WG; Tang XJ
    Environ Res; 2020 Dec; 191():110136. PubMed ID: 32860778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Bacteria live on arsenic analysis of microbial arsenic metabolism--a review].
    Wang G; Huang Y; Li J
    Wei Sheng Wu Xue Bao; 2011 Feb; 51(2):154-60. PubMed ID: 21574375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring Biodiversity and Arsenic Metabolism of Microbiota Inhabiting Arsenic-Rich Groundwaters in Northern Italy.
    Cavalca L; Zecchin S; Zaccheo P; Abbas B; Rotiroti M; Bonomi T; Muyzer G
    Front Microbiol; 2019; 10():1480. PubMed ID: 31312188
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-term performance of rapid oxidation of arsenite in simulated groundwater using a population of arsenite-oxidizing microorganisms in a bioreactor.
    Li H; Zeng XC; He Z; Chen X; E G; Han Y; Wang Y
    Water Res; 2016 Sep; 101():393-401. PubMed ID: 27288673
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arsenic transforming abilities of groundwater bacteria and the combined use of Aliihoeflea sp. strain 2WW and goethite in metalloid removal.
    Corsini A; Zaccheo P; Muyzer G; Andreoni V; Cavalca L
    J Hazard Mater; 2014 Mar; 269():89-97. PubMed ID: 24411461
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pathways of arsenic uptake and efflux.
    Yang HC; Fu HL; Lin YF; Rosen BP
    Curr Top Membr; 2012; 69():325-58. PubMed ID: 23046656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new aerobic chemolithoautotrophic arsenic oxidizing microorganism isolated from a high Andean watershed.
    Anguita JM; Rojas C; Pastén PA; Vargas IT
    Biodegradation; 2018 Feb; 29(1):59-69. PubMed ID: 29143902
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genes involved in arsenic transformation and resistance associated with different levels of arsenic-contaminated soils.
    Cai L; Liu G; Rensing C; Wang G
    BMC Microbiol; 2009 Jan; 9():4. PubMed ID: 19128515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arsenic uptake and speciation and the effects of phosphate nutrition in hydroponically grown kikuyu grass (Pennisetum clandestinum Hochst).
    Panuccio MR; Logoteta B; Beone GM; Cagnin M; Cacco G
    Environ Sci Pollut Res Int; 2011 Aug; 19(7):3046-53. PubMed ID: 22367495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of Roseomonas and Nocardioides spp. for arsenic transformation.
    Bagade AV; Bachate SP; Dholakia BB; Giri AP; Kodam KM
    J Hazard Mater; 2016 Nov; 318():742-750. PubMed ID: 27498193
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal of arsenic from groundwater by using a native isolated arsenite-oxidizing bacterium.
    Kao AC; Chu YJ; Hsu FL; Liao VH
    J Contam Hydrol; 2013 Dec; 155():1-8. PubMed ID: 24096199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.