These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 33072034)

  • 1. Modeling Competitive Mixtures With the Lotka-Volterra Framework for More Complex Fitness Assessment Between Strains.
    Dimas Martins A; Gjini E
    Front Microbiol; 2020; 11():572487. PubMed ID: 33072034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A mathematical framework for estimating pathogen transmission fitness and inoculum size using data from a competitive mixtures animal model.
    McCaw JM; Arinaminpathy N; Hurt AC; McVernon J; McLean AR
    PLoS Comput Biol; 2011 Apr; 7(4):e1002026. PubMed ID: 21552544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A COEVOLUTIONARY ISOMORPHISM APPLIED TO LABORATORY STUDIES OF COMPETITION.
    Pease CM
    Evolution; 1985 Mar; 39(2):444-450. PubMed ID: 28564209
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental measures of pathogen competition and relative fitness.
    Zhan J; McDonald BA
    Annu Rev Phytopathol; 2013; 51():131-53. PubMed ID: 23767846
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systematic comparison of coexistence in models of drug-sensitive and drug-resistant pathogen strains.
    Mulberry N; Rutherford A; Colijn C
    Theor Popul Biol; 2020 Jun; 133():150-158. PubMed ID: 31887315
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The survival analysis of a stochastic Lotka-Volterra competition model with a coexistence equilibrium.
    Xiong JJ; Li X; Wang H
    Math Biosci Eng; 2019 Mar; 16(4):2717-2737. PubMed ID: 31137234
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantifying relative within-host replication fitness in influenza virus competition experiments.
    Petrie SM; Butler J; Barr IG; McVernon J; Hurt AC; McCaw JM
    J Theor Biol; 2015 Oct; 382():259-71. PubMed ID: 26188087
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Designing experimental conditions to use the Lotka-Volterra model to infer tumor cell line interaction types.
    Cho H; Lewis AL; Storey KM; Byrne HM
    J Theor Biol; 2023 Feb; 559():111377. PubMed ID: 36470468
    [TBL] [Abstract][Full Text] [Related]  

  • 9. First arrived takes all: inhibitory priority effects dominate competition between co-infecting Borrelia burgdorferi strains.
    Devevey G; Dang T; Graves CJ; Murray S; Brisson D
    BMC Microbiol; 2015 Mar; 15():61. PubMed ID: 25887119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting N-Strain Coexistence from Co-colonization Interactions: Epidemiology Meets Ecology and the Replicator Equation.
    Madec S; Gjini E
    Bull Math Biol; 2020 Oct; 82(11):142. PubMed ID: 33119836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Signs of stabilisation and stable coexistence.
    Broekman MJE; Muller-Landau HC; Visser MD; Jongejans E; Wright SJ; de Kroon H
    Ecol Lett; 2019 Nov; 22(11):1957-1975. PubMed ID: 31328414
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The ratio of single to co-colonization is key to complexity in interacting systems with multiple strains.
    Gjini E; Madec S
    Ecol Evol; 2021 Jul; 11(13):8456-8474. PubMed ID: 34257910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transmission Bottleneck Size Estimation from Pathogen Deep-Sequencing Data, with an Application to Human Influenza A Virus.
    Sobel Leonard A; Weissman DB; Greenbaum B; Ghedin E; Koelle K
    J Virol; 2017 Jul; 91(14):. PubMed ID: 28468874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-species coexistence in Lotka-Volterra competitive systems with crowding effects.
    Gavina MKA; Tahara T; Tainaka KI; Ito H; Morita S; Ichinose G; Okabe T; Togashi T; Nagatani T; Yoshimura J
    Sci Rep; 2018 Jan; 8(1):1198. PubMed ID: 29352250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lotka-Volterra pairwise modeling fails to capture diverse pairwise microbial interactions.
    Momeni B; Xie L; Shou W
    Elife; 2017 Mar; 6():. PubMed ID: 28350295
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Harnessing uncertainty to approximate mechanistic models of interspecific interactions.
    Clark AT; Neuhauser C
    Theor Popul Biol; 2018 Sep; 123():35-44. PubMed ID: 29859932
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The impact of within-host ecology on the fitness of a drug-resistant parasite.
    Huijben S; Chan BHK; Nelson WA; Read AF
    Evol Med Public Health; 2018; 2018(1):127-137. PubMed ID: 30087774
    [No Abstract]   [Full Text] [Related]  

  • 18. Disentangling how multiple traits drive 2 strain frequencies in SIS dynamics with coinfection.
    Le TMT; Madec S; Gjini E
    J Theor Biol; 2022 Apr; 538():111041. PubMed ID: 35114194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bistability in a system of two species interacting through mutualism as well as competition: Chemostat vs. Lotka-Volterra equations.
    Vet S; de Buyl S; Faust K; Danckaert J; Gonze D; Gelens L
    PLoS One; 2018; 13(6):e0197462. PubMed ID: 29874266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unfolding the resident-invader dynamics of similar strategies.
    Dercole F; Geritz SAH
    J Theor Biol; 2016 Apr; 394():231-254. PubMed ID: 26723534
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.