These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 33072034)

  • 21. Closely-related Borrelia burgdorferi (sensu stricto) strains exhibit similar fitness in single infections and asymmetric competition in multiple infections.
    Rynkiewicz EC; Brown J; Tufts DM; Huang CI; Kampen H; Bent SJ; Fish D; Diuk-Wasser MA
    Parasit Vectors; 2017 Feb; 10(1):64. PubMed ID: 28166814
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influenza A Virus Coinfection through Transmission Can Support High Levels of Reassortment.
    Tao H; Li L; White MC; Steel J; Lowen AC
    J Virol; 2015 Aug; 89(16):8453-61. PubMed ID: 26041285
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Density-dependent selection and the limits of relative fitness.
    Bertram J; Masel J
    Theor Popul Biol; 2019 Oct; 129():81-92. PubMed ID: 30664884
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Experimental evidence rejects pairwise modelling approach to coexistence in plant communities.
    Dormann CF; Roxburgh SH
    Proc Biol Sci; 2005 Jun; 272(1569):1279-85. PubMed ID: 16024393
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Global dynamics of microbial competition for two resources with internal storage.
    Li B; Smith HL
    J Math Biol; 2007 Oct; 55(4):481-515. PubMed ID: 17505828
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reduced plant competition among kin can be explained by Jensen's inequality.
    Simonsen AK; Chow T; Stinchcombe JR
    Ecol Evol; 2014 Dec; 4(23):4454-66. PubMed ID: 25512842
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The interplay of phenotypic variability and fitness in finite microbial populations.
    Levien E; Kondev J; Amir A
    J R Soc Interface; 2020 May; 17(166):20190827. PubMed ID: 32396808
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Applying modern coexistence theory to priority effects.
    Grainger TN; Letten AD; Gilbert B; Fukami T
    Proc Natl Acad Sci U S A; 2019 Mar; 116(13):6205-6210. PubMed ID: 30850518
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Coinfection and the evolution of drug resistance.
    Hansen J; Day T
    J Evol Biol; 2014 Dec; 27(12):2595-604. PubMed ID: 25417787
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Competitive exclusion principle in ecology and absolute asymmetric synthesis in chemistry.
    Ribó JM; Hochberg D
    Chirality; 2015 Oct; 27(10):722-7. PubMed ID: 26301597
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of ecological differentiation on Lotka-Volterra systems for species with behavioral adaptation and variable growth rates.
    Lacitignola D; Tebaldi C
    Math Biosci; 2005 Mar; 194(1):95-123. PubMed ID: 15836867
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Web-gLV: A Web Based Platform for Lotka-Volterra Based Modeling and Simulation of Microbial Populations.
    Kuntal BK; Gadgil C; Mande SS
    Front Microbiol; 2019; 10():288. PubMed ID: 30846976
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modeling and quantifying frequency-dependent fitness in microbial populations with cross-feeding interactions.
    Ribeck N; Lenski RE
    Evolution; 2015 May; 69(5):1313-20. PubMed ID: 25787308
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modeling plant interspecific interactions from experiments with perennial crop mixtures to predict optimal combinations.
    Halty V; Valdés M; Tejera M; Picasso V; Fort H
    Ecol Appl; 2017 Dec; 27(8):2277-2289. PubMed ID: 28752664
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Predicting microbial growth in a mixed culture from growth curve data.
    Ram Y; Dellus-Gur E; Bibi M; Karkare K; Obolski U; Feldman MW; Cooper TF; Berman J; Hadany L
    Proc Natl Acad Sci U S A; 2019 Jul; 116(29):14698-14707. PubMed ID: 31253703
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluating the importance of within- and between-host selection pressures on the evolution of chronic pathogens.
    Coombs D; Gilchrist MA; Ball CL
    Theor Popul Biol; 2007 Dec; 72(4):576-91. PubMed ID: 17900643
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Increased in vitro fitness of multi- and extensively drug-resistant F15/LAM4/KZN strains of Mycobacterium tuberculosis.
    Naidoo CC; Pillay M
    Clin Microbiol Infect; 2014 Jun; 20(6):O361-9. PubMed ID: 24118525
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Incorporating the soil environment and microbial community into plant competition theory.
    Ke PJ; Miki T
    Front Microbiol; 2015; 6():1066. PubMed ID: 26500621
    [TBL] [Abstract][Full Text] [Related]  

  • 39. When the exception becomes the rule: the disappearance of limiting similarity in the Lotka-Volterra model.
    Barabás G; Meszéna G
    J Theor Biol; 2009 May; 258(1):89-94. PubMed ID: 19171156
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Intraspecific competition between co-infecting parasite strains enhances host survival in African trypanosomes.
    Balmer O; Stearns SC; Schötzau A; Brun R
    Ecology; 2009 Dec; 90(12):3367-78. PubMed ID: 20120806
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.