These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 33072036)

  • 1. Pipeline for Targeted Meta-Proteomic Analyses to Assess the Diversity of Cattle Rumen Microbial Urease.
    Zhang X; Zhao S; He Y; Zheng N; Yan X; Wang J
    Front Microbiol; 2020; 11():573414. PubMed ID: 33072036
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activity- and Enrichment-Based Metaproteomics Insights into Active Urease from the Rumen Microbiota of Cattle.
    Zhang X; Xiong Z; Li M; Zheng N; Zhao S; Wang J
    Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35055002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional gene-guided enrichment plus in situ microsphere cultivation enables isolation of new crucial ureolytic bacteria from the rumen of cattle.
    Liu S; Yu Z; Zhong H; Zheng N; Huws S; Wang J; Zhao S
    Microbiome; 2023 Apr; 11(1):76. PubMed ID: 37060083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reducing microbial ureolytic activity in the rumen by immunization against urease therein.
    Zhao S; Wang J; Zheng N; Bu D; Sun P; Yu Z
    BMC Vet Res; 2015 Apr; 11():94. PubMed ID: 25889568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differences in Ureolytic Bacterial Composition between the Rumen Digesta and Rumen Wall Based on
    Jin D; Zhao S; Zheng N; Bu D; Beckers Y; Denman SE; McSweeney CS; Wang J
    Front Microbiol; 2017; 8():385. PubMed ID: 28326079
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insights into Abundant Rumen Ureolytic Bacterial Community Using Rumen Simulation System.
    Jin D; Zhao S; Wang P; Zheng N; Bu D; Beckers Y; Wang J
    Front Microbiol; 2016; 7():1006. PubMed ID: 27446045
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ureases in the gastrointestinal tracts of ruminant and monogastric animals and their implication in urea-N/ammonia metabolism: A review.
    Patra AK; Aschenbach JR
    J Adv Res; 2018 Sep; 13():39-50. PubMed ID: 30094081
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular docking of Glycine max and Medicago truncatula ureases with urea; bioinformatics approaches.
    Filiz E; Vatansever R; Ozyigit II
    Mol Biol Rep; 2016 Mar; 43(3):129-40. PubMed ID: 26852122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation and pan-genome analysis of
    Zhong H; Zheng N; Wang J; Zhao S
    Front Microbiol; 2023; 14():1169973. PubMed ID: 37089548
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Urease activity of adherent bacteria and rumen fluid bacteria.
    Javorský P; Rybosová E; Havassy I; Horský K; Kmet V
    Physiol Bohemoslov; 1987; 36(1):75-81. PubMed ID: 2954172
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ureolytic bacteria in sheep rumen.
    van Wyk L; Steyn PL
    J Gen Microbiol; 1975 Dec; 91(2):225-32. PubMed ID: 1239488
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationship between efficiency of nitrogen utilization and isotopic nitrogen fractionation in dairy cows: contribution of digestion v. metabolism?
    Cantalapiedra-Hijar G; Fouillet H; Huneau JF; Fanchone A; Doreau M; Nozière P; Ortigues-Marty I
    Animal; 2016 Feb; 10(2):221-9. PubMed ID: 26776494
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distribution and changes in urease (EC 3.5.1.5) activity in Rumen Simulation Technique (Rusitec).
    Czerkawski JW; Breckenridge G
    Br J Nutr; 1982 Mar; 47(2):331-48. PubMed ID: 7039670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A qualitative and quantitative evaluation of the peptide characteristics of microwave- and ultrasound-assisted digestion in discovery and targeted proteomic analyses.
    Guo Z; Cheng J; Sun H; Sun W
    Rapid Commun Mass Spectrom; 2017 Aug; 31(16):1353-1362. PubMed ID: 28557149
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Purification and properties of urease from bovine rumen.
    Mahadevan S; Sauer FD; Erfle JD
    Biochem J; 1977 Jun; 163(3):495-501. PubMed ID: 18137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of the novel urease inhibitor N-(n-butyl) thiophosphoric triamide on ruminant nitrogen metabolism: I. In vitro urea kinetics and substrate digestion.
    Ludden PA; Harmon DL; Larson BT; Axe DE
    J Anim Sci; 2000 Jan; 78(1):181-7. PubMed ID: 10682820
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of the novel urease inhibitor N-(n-butyl) thiophosphoric triamide on ruminant nitrogen metabolism: II. Ruminal nitrogen metabolism, diet digestibility, and nitrogen balance in lambs.
    Ludden PA; Harmon DL; Huntington GB; Larson BT; Axe DE
    J Anim Sci; 2000 Jan; 78(1):188-98. PubMed ID: 10682821
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A determination and comparison of urease activity in feces and fresh manure from pig and cattle in relation to ammonia production and pH changes.
    Dai X; Karring H
    PLoS One; 2014; 9(11):e110402. PubMed ID: 25397404
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The mechanism of passage of endogenous urea through the rumen wall and the role of ureolytic epithelial bacteria in the urea flux.
    Cheng KJ; Wallace RJ
    Br J Nutr; 1979 Nov; 42(3):553-7. PubMed ID: 508714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antifungal activity of plant and bacterial ureases.
    Becker-Ritt AB; Martinelli AH; Mitidieri S; Feder V; Wassermann GE; Santi L; Vainstein MH; Oliveira JT; Fiuza LM; Pasquali G; Carlini CR
    Toxicon; 2007 Dec; 50(7):971-83. PubMed ID: 17825863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.