These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
478 related articles for article (PubMed ID: 33072063)
1. Molecular Insights Into Regulatory T-Cell Adaptation to Self, Environment, and Host Tissues: Plasticity or Loss of Function in Autoimmune Disease. Brown CY; Sadlon T; Hope CM; Wong YY; Wong S; Liu N; Withers H; Brown K; Bandara V; Gundsambuu B; Pederson S; Breen J; Robertson SA; Forrest A; Beyer M; Barry SC Front Immunol; 2020; 11():1269. PubMed ID: 33072063 [TBL] [Abstract][Full Text] [Related]
2. Unravelling the molecular basis for regulatory T-cell plasticity and loss of function in disease. Sadlon T; Brown CY; Bandara V; Hope CM; Schjenken JE; Pederson SM; Breen J; Forrest A; Beyer M; Robertson S; Barry SC Clin Transl Immunology; 2018; 7(2):e1011. PubMed ID: 29497530 [TBL] [Abstract][Full Text] [Related]
3. Treg cells in autoimmunity: from identification to Treg-based therapies. Göschl L; Scheinecker C; Bonelli M Semin Immunopathol; 2019 May; 41(3):301-314. PubMed ID: 30953162 [TBL] [Abstract][Full Text] [Related]
4. Molecular Mechanisms Controlling Foxp3 Expression in Health and Autoimmunity: From Epigenetic to Post-translational Regulation. Colamatteo A; Carbone F; Bruzzaniti S; Galgani M; Fusco C; Maniscalco GT; Di Rella F; de Candia P; De Rosa V Front Immunol; 2019; 10():3136. PubMed ID: 32117202 [TBL] [Abstract][Full Text] [Related]
5. Thymic commitment of regulatory T cells is a pathway of TCR-dependent selection that isolates repertoires undergoing positive or negative selection. Coutinho A; Caramalho I; Seixas E; Demengeot J Curr Top Microbiol Immunol; 2005; 293():43-71. PubMed ID: 15981475 [TBL] [Abstract][Full Text] [Related]
6. Regulatory T Cell Plasticity and Stability and Autoimmune Diseases. Qiu R; Zhou L; Ma Y; Zhou L; Liang T; Shi L; Long J; Yuan D Clin Rev Allergy Immunol; 2020 Feb; 58(1):52-70. PubMed ID: 30449014 [TBL] [Abstract][Full Text] [Related]
7. Regulatory T Cell-Specific Epigenomic Region Variants Are a Key Determinant of Susceptibility to Common Autoimmune Diseases. Ohkura N; Yasumizu Y; Kitagawa Y; Tanaka A; Nakamura Y; Motooka D; Nakamura S; Okada Y; Sakaguchi S Immunity; 2020 Jun; 52(6):1119-1132.e4. PubMed ID: 32362325 [TBL] [Abstract][Full Text] [Related]
8. Peptidase inhibitor 16 identifies a human regulatory T-cell subset with reduced FOXP3 expression over the first year of recent onset type 1 diabetes. Hope CM; Welch J; Mohandas A; Pederson S; Hill D; Gundsambuu B; Eastaff-Leung N; Grosse R; Bresatz S; Ang G; Papademetrios M; Zola H; Duhen T; Campbell D; Brown CY; Krumbiegel D; Sadlon T; Couper JJ; Barry SC Eur J Immunol; 2019 Aug; 49(8):1235-1250. PubMed ID: 31127857 [TBL] [Abstract][Full Text] [Related]
9. The progress and prospect of regulatory T cells in autoimmune diseases. Zhang X; Olsen N; Zheng SG J Autoimmun; 2020 Jul; 111():102461. PubMed ID: 32305296 [TBL] [Abstract][Full Text] [Related]
10. Regulatory T Cells: the Many Faces of Foxp3. Georgiev P; Charbonnier LM; Chatila TA J Clin Immunol; 2019 Oct; 39(7):623-640. PubMed ID: 31478130 [TBL] [Abstract][Full Text] [Related]
11. Regulatory T Cells in Autoimmunity and Cancer: A Duplicitous Lifestyle. Hatzioannou A; Boumpas A; Papadopoulou M; Papafragkos I; Varveri A; Alissafi T; Verginis P Front Immunol; 2021; 12():731947. PubMed ID: 34539668 [TBL] [Abstract][Full Text] [Related]
12. The role of FOXP3 Mohr A; Atif M; Balderas R; Gorochov G; Miyara M Clin Exp Immunol; 2019 Jul; 197(1):24-35. PubMed ID: 30830965 [TBL] [Abstract][Full Text] [Related]
13. Augmented Expansion of Treg Cells From Healthy and Autoimmune Subjects Reading JL; Roobrouck VD; Hull CM; Becker PD; Beyens J; Valentin-Torres A; Boardman D; Lamperti EN; Stubblefield S; Lombardi G; Deans R; Ting AE; Tree T Front Immunol; 2021; 12():716606. PubMed ID: 34539651 [TBL] [Abstract][Full Text] [Related]
14. Few Foxp3⁺ regulatory T cells are sufficient to protect adult mice from lethal autoimmunity. Mayer CT; Ghorbani P; Kühl AA; Stüve P; Hegemann M; Berod L; Gershwin ME; Sparwasser T Eur J Immunol; 2014 Oct; 44(10):2990-3002. PubMed ID: 25042334 [TBL] [Abstract][Full Text] [Related]
15. Nonoverlapping roles of PD-1 and FoxP3 in maintaining immune tolerance in a novel autoimmune pancreatitis mouse model. Zhang B; Chikuma S; Hori S; Fagarasan S; Honjo T Proc Natl Acad Sci U S A; 2016 Jul; 113(30):8490-5. PubMed ID: 27410049 [TBL] [Abstract][Full Text] [Related]
16. Nature vs. nurture: FOXP3, genetics, and tissue environment shape Treg function. Raugh A; Allard D; Bettini M Front Immunol; 2022; 13():911151. PubMed ID: 36032083 [TBL] [Abstract][Full Text] [Related]
18. Mechanisms of T Alvarez F; Al-Aubodah TA; Yang YH; Piccirillo CA J Leukoc Biol; 2020 Aug; 108(2):559-571. PubMed ID: 32202345 [TBL] [Abstract][Full Text] [Related]
19. The chromatin-modifying enzyme Ezh2 is critical for the maintenance of regulatory T cell identity after activation. DuPage M; Chopra G; Quiros J; Rosenthal WL; Morar MM; Holohan D; Zhang R; Turka L; Marson A; Bluestone JA Immunity; 2015 Feb; 42(2):227-238. PubMed ID: 25680271 [TBL] [Abstract][Full Text] [Related]
20. Genetic and epigenetic basis of Treg cell development and function: from a FoxP3-centered view to an epigenome-defined view of natural Treg cells. Morikawa H; Sakaguchi S Immunol Rev; 2014 May; 259(1):192-205. PubMed ID: 24712467 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]