These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 33073170)

  • 1. The Possibility of Zero Limb-Work Gaits in Sprawled and Parasagittal Quadrupeds: Insights from Linkages of the Industrial Revolution.
    Usherwood JR
    Integr Org Biol; 2020; 2(1):obaa017. PubMed ID: 33073170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Corrigendum to: The possibility of zero limb-work gaits in sprawled and parasagittal quadrupeds: insights from linkages of the industrial revolution.
    Integr Org Biol; 2020; 2(1):obaa019. PubMed ID: 33103057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Patterns of mechanical energy change in tetrapod gait: pendula, springs and work.
    Biewener AA
    J Exp Zool A Comp Exp Biol; 2006 Nov; 305(11):899-911. PubMed ID: 17029267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Limb work and joint work minimization reveal an energetic benefit to the elbows-back, knees-forward limb design in parasagittal quadrupeds.
    Usherwood JR; Granatosky MC
    Proc Biol Sci; 2020 Dec; 287(1940):20201517. PubMed ID: 33290670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Collisional mechanics of the diagonal gaits of horses over a range of speeds.
    Hobbs SJ; Clayton HM
    PeerJ; 2019; 7():e7689. PubMed ID: 31576241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hindlimb muscle function in relation to speed and gait: in vivo patterns of strain and activation in a hip and knee extensor of the rat (Rattus norvegicus).
    Gillis GB; Biewener AA
    J Exp Biol; 2001 Aug; 204(Pt 15):2717-31. PubMed ID: 11533122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fifteen observations on the structure of energy-minimizing gaits in many simple biped models.
    Srinivasan M
    J R Soc Interface; 2011 Jan; 8(54):74-98. PubMed ID: 20542957
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gait mechanics of lemurid primates on terrestrial and arboreal substrates.
    Franz TM; Demes B; Carlson KJ
    J Hum Evol; 2005 Feb; 48(2):199-217. PubMed ID: 15701531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential leg function in a sprawled-posture quadrupedal trotter.
    Chen JJ; Peattie AM; Autumn K; Full RJ
    J Exp Biol; 2006 Jan; 209(Pt 2):249-59. PubMed ID: 16391347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Legs as linkages: an alternative paradigm for the role of tendons and isometric muscles in facilitating economical gait.
    Usherwood JR
    J Exp Biol; 2022 Mar; 225(Suppl_1):. PubMed ID: 35258605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Leg design in hexapedal runners.
    Full RJ; Blickhan R; Ting LH
    J Exp Biol; 1991 Jul; 158():369-90. PubMed ID: 1919412
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Giant Galapagos tortoises walk without inverted pendulum mechanical-energy exchange.
    Zani PA; Gottschall JS; Kram R
    J Exp Biol; 2005 Apr; 208(Pt 8):1489-94. PubMed ID: 15802673
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Muscle mechanical advantage of human walking and running: implications for energy cost.
    Biewener AA; Farley CT; Roberts TJ; Temaner M
    J Appl Physiol (1985); 2004 Dec; 97(6):2266-74. PubMed ID: 15258124
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of compliance in mammalian running gaits.
    McMahon TA
    J Exp Biol; 1985 Mar; 115():263-82. PubMed ID: 4031769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Locomotor mechanics of the slender loris (Loris tardigradus).
    Schmitt D; Lemelin P
    J Hum Evol; 2004; 47(1-2):85-94. PubMed ID: 15288525
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanics of locomotion in lizards.
    Farley CT; Ko TC
    J Exp Biol; 1997 Aug; 200(Pt 16):2177-88. PubMed ID: 9286099
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Whole body mechanics of stealthy walking in cats.
    Bishop KL; Pai AK; Schmitt D
    PLoS One; 2008; 3(11):e3808. PubMed ID: 19043580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting the energy cost of terrestrial locomotion: a test of the LiMb model in humans and quadrupeds.
    Pontzer H
    J Exp Biol; 2007 Feb; 210(Pt 3):484-94. PubMed ID: 17234618
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diagonal-couplet gaits on discontinuous supports in Japanese macaques and implications for the adaptive significance of the diagonal-sequence, diagonal-couplet gait of primates.
    Goto R; Kinoshita Y; Shitara T; Hirasaki E
    Am J Biol Anthropol; 2023 Jul; 181(3):426-439. PubMed ID: 37209057
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Linking Gait Dynamics to Mechanical Cost of Legged Locomotion.
    Lee DV; Harris SL
    Front Robot AI; 2018; 5():111. PubMed ID: 33500990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.