These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 33073238)
1. Tuning the porosity of biofabricated chitosan membranes in microfluidics with co-assembled nanoparticles as templates. Ly KL; Raub CB; Luo X Mater Adv; 2020 Apr; 1(1):34-44. PubMed ID: 33073238 [TBL] [Abstract][Full Text] [Related]
2. In situ generation of pH gradients in microfluidic devices for biofabrication of freestanding, semi-permeable chitosan membranes. Luo X; Berlin DL; Betz J; Payne GF; Bentley WE; Rubloff GW Lab Chip; 2010 Jan; 10(1):59-65. PubMed ID: 20024051 [TBL] [Abstract][Full Text] [Related]
3. Birefringence of flow-assembled chitosan membranes in microfluidics. Li K; Correa SO; Pham P; Raub CB; Luo X Biofabrication; 2017 Jun; 9(3):034101. PubMed ID: 28664877 [TBL] [Abstract][Full Text] [Related]
4. Modulating the properties of flow-assembled chitosan membranes in microfluidics with glutaraldehyde crosslinking. Hu P; Raub CB; Choy JS; Luo X J Mater Chem B; 2020 Mar; 8(12):2519-2529. PubMed ID: 32124900 [TBL] [Abstract][Full Text] [Related]
5. Flow-assembled chitosan membranes in microfluidics: recent advances and applications. Ly KL; Hu P; Pham LHP; Luo X J Mater Chem B; 2021 Apr; 9(15):3258-3283. PubMed ID: 33725061 [TBL] [Abstract][Full Text] [Related]
6. Microfluidic partition with in situ biofabricated semipermeable biopolymer membranes for static gradient generation. Luo X; Vo T; Jambi F; Pham P; Choy JS Lab Chip; 2016 Sep; 16(19):3815-3823. PubMed ID: 27713976 [TBL] [Abstract][Full Text] [Related]
7. Bacterial chemotaxis in static gradients quantified in a biopolymer membrane-integrated microfluidic platform. Hu P; Ly KL; Pham LPH; Pottash AE; Sheridan K; Wu HC; Tsao CY; Quan D; Bentley WE; Rubloff GW; Sintim HO; Luo X Lab Chip; 2022 Aug; 22(17):3203-3216. PubMed ID: 35856590 [TBL] [Abstract][Full Text] [Related]
8. A microfluidic approach to micromembrane synthesis for complex release profiles of nanocarriers. Jia N; Rosella E; Juère E; Pouliot R; Kleitz F; Greener J Lab Chip; 2020 Mar; 20(6):1066-1071. PubMed ID: 32100795 [TBL] [Abstract][Full Text] [Related]
9. Real rock-microfluidic flow cell: A test bed for real-time in situ analysis of flow, transport, and reaction in a subsurface reactive transport environment. Singh R; Sivaguru M; Fried GA; Fouke BW; Sanford RA; Carrera M; Werth CJ J Contam Hydrol; 2017 Sep; 204():28-39. PubMed ID: 28802767 [TBL] [Abstract][Full Text] [Related]
10. Self-Organized Implanting of Micro/Nanofiltration Membranes in Advanced Flow μ-Reactors. Maity S; Bhuyan T; Bhattacharya R; Bandyopadhyay D ACS Appl Mater Interfaces; 2021 Apr; 13(16):19430-19442. PubMed ID: 33851814 [TBL] [Abstract][Full Text] [Related]
11. Nanoporous elements in microfluidics for multiscale manipulation of bioparticles. Chen GD; Fachin F; Fernandez-Suarez M; Wardle BL; Toner M Small; 2011 Apr; 7(8):1061-7. PubMed ID: 21413145 [TBL] [Abstract][Full Text] [Related]
12. A new approach to in-situ "micromanufacturing": microfluidic fabrication of magnetic and fluorescent chains using chitosan microparticles as building blocks. Jiang K; Xue C; Arya C; Shao C; George EO; DeVoe DL; Raghavan SR Small; 2011 Sep; 7(17):2470-6. PubMed ID: 21710485 [TBL] [Abstract][Full Text] [Related]
13. Superclear, Porous Cellulose Membranes with Chitosan-Coated Nanofibers for Visualized Cutaneous Wound Healing Dressing. Xia J; Zhang H; Yu F; Pei Y; Luo X ACS Appl Mater Interfaces; 2020 May; 12(21):24370-24379. PubMed ID: 32368896 [TBL] [Abstract][Full Text] [Related]
14. Bio-functional hydrogel membranes loaded with chitosan nanoparticles for accelerated wound healing. Shafique M; Sohail M; Minhas MU; Khaliq T; Kousar M; Khan S; Hussain Z; Mahmood A; Abbasi M; Aziz HC; Shah SA Int J Biol Macromol; 2021 Feb; 170():207-221. PubMed ID: 33359612 [TBL] [Abstract][Full Text] [Related]
15. Study of albumin and fibrinogen membranes formed by interfacial crosslinking using microfluidic flow. Chang H; Khan R; Rong Z; Sapelkin A; Vadgama P Biofabrication; 2010 Sep; 2(3):035002. PubMed ID: 20823505 [TBL] [Abstract][Full Text] [Related]
16. Chitosan hydrogel micro-bio-devices with complex capillary patterns via reactive-diffusive self-assembly. Adibnia V; Mirbagheri M; Latreille PL; Faivre J; Cécyre B; Robert J; Bouchard JF; Martinez VA; Delair T; David L; Hwang DK; Banquy X Acta Biomater; 2019 Nov; 99():211-219. PubMed ID: 31473363 [TBL] [Abstract][Full Text] [Related]
17. Layer-by-layer assembled biopolymer microcapsule with separate layer cavities generated by gas-liquid microfluidic approach. Wang Y; Zhou J; Guo X; Hu Q; Qin C; Liu H; Dong M; Chen Y Mater Sci Eng C Mater Biol Appl; 2017 Dec; 81():13-19. PubMed ID: 28887956 [TBL] [Abstract][Full Text] [Related]
18. Microfluidic-aided fabrication of nanoparticles blend based on chitosan for a transdermal multidrug delivery application. Shamsi M; Zahedi P; Ghourchian H; Minaeian S Int J Biol Macromol; 2017 Jun; 99():433-442. PubMed ID: 28274863 [TBL] [Abstract][Full Text] [Related]
19. Novel electrospun chitosan/PEO membranes for more predictive nanoparticle transport studies at biological barriers. Furer LA; Abad ÁD; Manser P; Hannig Y; Schuerle S; Fortunato G; Buerki-Thurnherr T Nanoscale; 2022 Aug; 14(33):12136-12152. PubMed ID: 35968642 [TBL] [Abstract][Full Text] [Related]