These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 33073541)

  • 1. A 3D, Dynamically Loaded Hydrogel Model of the Osteochondral Unit to Study Osteocyte Mechanobiology.
    Wilmoth RL; Ferguson VL; Bryant SJ
    Adv Healthc Mater; 2020 Nov; 9(22):e2001226. PubMed ID: 33073541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A 3D bioreactor model to study osteocyte differentiation and mechanobiology under perfusion and compressive mechanical loading.
    Rindt WD; Krug M; Yamada S; Sennefelder F; Belz L; Cheng WH; Azeem M; Kuric M; Evers M; Leich E; Hartmann TN; Pereira AR; Hermann M; Hansmann J; Mussoni C; Stahlhut P; Ahmad T; Yassin MA; Mustafa K; Ebert R; Jundt F
    Acta Biomater; 2024 Aug; 184():210-225. PubMed ID: 38969078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. IDG-SW3 Osteocyte Differentiation and Bone Extracellular Matrix Deposition Are Enhanced in a 3D Matrix Metalloproteinase-Sensitive Hydrogel.
    Aziz AH; Wilmoth RL; Ferguson VL; Bryant SJ
    ACS Appl Bio Mater; 2020 Mar; 3(3):1666-1680. PubMed ID: 32719827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical loading regulates human MSC differentiation in a multi-layer hydrogel for osteochondral tissue engineering.
    Steinmetz NJ; Aisenbrey EA; Westbrook KK; Qi HJ; Bryant SJ
    Acta Biomater; 2015 Jul; 21():142-53. PubMed ID: 25900444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of dynamic compressive loading on human mesenchymal stem cell osteogenesis in the stiff layer of a bilayer hydrogel.
    Aziz AH; Eckstein K; Ferguson VL; Bryant SJ
    J Tissue Eng Regen Med; 2019 Jun; 13(6):946-959. PubMed ID: 30793536
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of prostaglandin E2 on gene expression of IDG-SW3-derived osteocytes in 2D and 3D culture.
    Wilmoth RL; Sharma S; Ferguson VL; Bryant SJ
    Biochem Biophys Res Commun; 2022 Nov; 630():8-15. PubMed ID: 36126467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interpenetrating network hydrogels for studying the role of matrix viscoelasticity in 3D osteocyte morphogenesis.
    Bernero M; Zauchner D; Müller R; Qin XH
    Biomater Sci; 2024 Feb; 12(4):919-932. PubMed ID: 38231154
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlled Mechanical Property Gradients Within a Digital Light Processing Printed Hydrogel-Composite Osteochondral Scaffold.
    Eckstein KN; Hergert JE; Uzcategui AC; Schoonraad SA; Bryant SJ; McLeod RR; Ferguson VL
    Ann Biomed Eng; 2024 Aug; 52(8):2162-2177. PubMed ID: 38684606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Strength, Biomimetic Functional Chitosan-Based Hydrogels for Full-Thickness Osteochondral Defect Repair.
    Fang J; Liao J; Zhong C; Lu X; Ren F
    ACS Biomater Sci Eng; 2022 Oct; 8(10):4449-4461. PubMed ID: 36070613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mussel-Inspired Tough Hydrogel with In Situ Nanohydroxyapatite Mineralization for Osteochondral Defect Repair.
    Gan D; Wang Z; Xie C; Wang X; Xing W; Ge X; Yuan H; Wang K; Tan H; Lu X
    Adv Healthc Mater; 2019 Nov; 8(22):e1901103. PubMed ID: 31609095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reinforcement of Mono- and Bi-layer Poly(Ethylene Glycol) Hydrogels with a Fibrous Collagen Scaffold.
    Kinneberg KR; Nelson A; Stender ME; Aziz AH; Mozdzen LC; Harley BA; Bryant SJ; Ferguson VL
    Ann Biomed Eng; 2015 Nov; 43(11):2618-29. PubMed ID: 26001970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Osteocyte calcium signaling - A potential translator of mechanical load to mechanobiology.
    Lewis KJ
    Bone; 2021 Dec; 153():116136. PubMed ID: 34339908
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluid flow in the osteocyte mechanical environment: a fluid-structure interaction approach.
    Verbruggen SW; Vaughan TJ; McNamara LM
    Biomech Model Mechanobiol; 2014 Jan; 13(1):85-97. PubMed ID: 23567965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Novel Osteogenic Cell Line That Differentiates Into GFP-Tagged Osteocytes and Forms Mineral With a Bone-Like Lacunocanalicular Structure.
    Wang K; Le L; Chun BM; Tiede-Lewis LM; Shiflett LA; Prideaux M; Campos RS; Veno PA; Xie Y; Dusevich V; Bonewald LF; Dallas SL
    J Bone Miner Res; 2019 Jun; 34(6):979-995. PubMed ID: 30882939
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Icariin conjugated hyaluronic acid/collagen hydrogel for osteochondral interface restoration.
    Yang J; Liu Y; He L; Wang Q; Wang L; Yuan T; Xiao Y; Fan Y; Zhang X
    Acta Biomater; 2018 Jul; 74():156-167. PubMed ID: 29734010
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Marginal sealing around integral bilayer scaffolds for repairing osteochondral defects based on photocurable silk hydrogels.
    Wu X; Zhou M; Jiang F; Yin S; Lin S; Yang G; Lu Y; Zhang W; Jiang X
    Bioact Mater; 2021 Nov; 6(11):3976-3986. PubMed ID: 33997487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioinspired stratified electrowritten fiber-reinforced hydrogel constructs with layer-specific induction capacity for functional osteochondral regeneration.
    Qiao Z; Lian M; Han Y; Sun B; Zhang X; Jiang W; Li H; Hao Y; Dai K
    Biomaterials; 2021 Jan; 266():120385. PubMed ID: 33120203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell line IDG-SW3 replicates osteoblast-to-late-osteocyte differentiation in vitro and accelerates bone formation in vivo.
    Woo SM; Rosser J; Dusevich V; Kalajzic I; Bonewald LF
    J Bone Miner Res; 2011 Nov; 26(11):2634-46. PubMed ID: 21735478
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parathyroid Hormone Induces Bone Cell Motility and Loss of Mature Osteocyte Phenotype through L-Calcium Channel Dependent and Independent Mechanisms.
    Prideaux M; Dallas SL; Zhao N; Johnsrud ED; Veno PA; Guo D; Mishina Y; Harris SE; Bonewald LF
    PLoS One; 2015; 10(5):e0125731. PubMed ID: 25942444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A 3D-printed PRP-GelMA hydrogel promotes osteochondral regeneration through M2 macrophage polarization in a rabbit model.
    Jiang G; Li S; Yu K; He B; Hong J; Xu T; Meng J; Ye C; Chen Y; Shi Z; Feng G; Chen W; Yan S; He Y; Yan R
    Acta Biomater; 2021 Jul; 128():150-162. PubMed ID: 33894346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.