These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 33073549)

  • 1. Ligand Density Controls C-Type Lectin-Like Molecule-1 Receptor-Specific Uptake of Polymer Nanoparticles.
    Ackun-Farmmer MA; Alatise KL; Cross G; Benoit DSW
    Adv Biosyst; 2020 Nov; 4(11):e2000172. PubMed ID: 33073549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advancing Bone-Targeted Drug Delivery: Leveraging Biological Factors and Nanoparticle Designs to Improve Therapeutic Efficacy.
    Xiao B; Ackun-Farmmer MA; Adjei-Sowah E; Liu Y; Chandrasiri I; Benoit DSW
    ACS Biomater Sci Eng; 2024 Apr; 10(4):2224-2234. PubMed ID: 38537162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of high-affinity peptides and their feasibility for use in nanotherapeutics targeting leukemia stem cells.
    Zhang H; Luo J; Li Y; Henderson PT; Wang Y; Wachsmann-Hogiu S; Zhao W; Lam KS; Pan CX
    Nanomedicine; 2012 Oct; 8(7):1116-24. PubMed ID: 22197725
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Docetaxel (DTX)-loaded polydopamine-modified TPGS-PLA nanoparticles as a targeted drug delivery system for the treatment of liver cancer.
    Zhu D; Tao W; Zhang H; Liu G; Wang T; Zhang L; Zeng X; Mei L
    Acta Biomater; 2016 Jan; 30():144-154. PubMed ID: 26602819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing potential peptide targeting ligands by quantification of cellular adhesion of model nanoparticles under flow conditions.
    Broda E; Mickler FM; Lächelt U; Morys S; Wagner E; Bräuchle C
    J Control Release; 2015 Sep; 213():79-85. PubMed ID: 26134072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential uptake of nanoparticles by endothelial cells through polyelectrolytes with affinity for caveolae.
    Voigt J; Christensen J; Shastri VP
    Proc Natl Acad Sci U S A; 2014 Feb; 111(8):2942-7. PubMed ID: 24516167
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual-Ligand Modified Polymer-Lipid Hybrid Nanoparticles for Docetaxel Targeting Delivery to Her2/neu Overexpressed Human Breast Cancer Cells.
    Yang Z; Tang W; Luo X; Zhang X; Zhang C; Li H; Gao D; Luo H; Jiang Q; Liu J
    J Biomed Nanotechnol; 2015 Aug; 11(8):1401-17. PubMed ID: 26295141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Weak Link: Optimization of the Ligand-Nanoparticle Interface To Enhance Cancer Cell Targeting by Polymer Micelles.
    Wang J; Dzuricky M; Chilkoti A
    Nano Lett; 2017 Oct; 17(10):5995-6005. PubMed ID: 28853896
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fracture-Targeted Delivery of β-Catenin Agonists via Peptide-Functionalized Nanoparticles Augments Fracture Healing.
    Wang Y; Newman MR; Ackun-Farmmer M; Baranello MP; Sheu TJ; Puzas JE; Benoit DSW
    ACS Nano; 2017 Sep; 11(9):9445-9458. PubMed ID: 28881139
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of poly(ethylene glycol) grafting density on the tumor targeting efficacy of nanoparticles with ligand modification.
    Zhang S; Tang C; Yin C
    Drug Deliv; 2015 Feb; 22(2):182-90. PubMed ID: 24215373
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of ligand valency and density on the targeting ability of multivalent nanoparticles based on negatively charged chitosan nanoparticles.
    Cao J; Zhang Y; Wu Y; Wu J; Wang W; Wu Q; Yuan Z
    Colloids Surf B Biointerfaces; 2018 Jan; 161():508-518. PubMed ID: 29128837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlling ligand surface density optimizes nanoparticle binding to ICAM-1.
    Fakhari A; Baoum A; Siahaan TJ; Le KB; Berkland C
    J Pharm Sci; 2011 Mar; 100(3):1045-56. PubMed ID: 20922813
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ligand-Modified Erythrocyte Membrane-Cloaked Metal-Organic Framework Nanoparticles for Targeted Antitumor Therapy.
    Lin Y; Zhong Y; Chen Y; Li L; Chen G; Zhang J; Li P; Zhou C; Sun Y; Ma Y; Xie Z; Liao Q
    Mol Pharm; 2020 Sep; 17(9):3328-3341. PubMed ID: 32804508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeting nanoparticles to CD40, DEC-205 or CD11c molecules on dendritic cells for efficient CD8(+) T cell response: a comparative study.
    Cruz LJ; Rosalia RA; Kleinovink JW; Rueda F; Löwik CW; Ossendorp F
    J Control Release; 2014 Oct; 192():209-18. PubMed ID: 25068703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced uptake and transport of PLGA-modified nanoparticles in cervical cancer.
    Sims LB; Curtis LT; Frieboes HB; Steinbach-Rankins JM
    J Nanobiotechnology; 2016 Apr; 14():33. PubMed ID: 27102372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biodegradable polymeric nanoparticles administered in the cerebrospinal fluid: Brain biodistribution, preferential internalization in microglia and implications for cell-selective drug release.
    Peviani M; Capasso Palmiero U; Cecere F; Milazzo R; Moscatelli D; Biffi A
    Biomaterials; 2019 Jul; 209():25-40. PubMed ID: 31026609
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling of nanoparticle transport through the female reproductive tract for the treatment of infectious diseases.
    Sims LB; Miller HA; Halwes ME; Steinbach-Rankins JM; Frieboes HB
    Eur J Pharm Biopharm; 2019 May; 138():37-47. PubMed ID: 30195726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Size-dependent internalisation of folate-decorated nanoparticles via the pathways of clathrin and caveolae-mediated endocytosis in ARPE-19 cells.
    Langston Suen WL; Chau Y
    J Pharm Pharmacol; 2014 Apr; 66(4):564-73. PubMed ID: 24635558
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative Study of the Interaction of Multivalent Ligand-Modified Nanoparticles with Breast Cancer Cells with Tunable Receptor Density.
    Wang J; Min J; Eghtesadi SA; Kane RS; Chilkoti A
    ACS Nano; 2020 Jan; 14(1):372-383. PubMed ID: 31899613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro evaluation of dendrimer-polymer hybrid nanoparticles on their controlled cellular targeting kinetics.
    Sunoqrot S; Liu Y; Kim DH; Hong S
    Mol Pharm; 2013 Jun; 10(6):2157-66. PubMed ID: 23234605
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.