BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 33073549)

  • 21. Effects of ligands with different water solubilities on self-assembly and properties of targeted nanoparticles.
    Valencia PM; Hanewich-Hollatz MH; Gao W; Karim F; Langer R; Karnik R; Farokhzad OC
    Biomaterials; 2011 Sep; 32(26):6226-33. PubMed ID: 21658757
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Peptide-conjugated biodegradable nanoparticles as a carrier to target paclitaxel to tumor neovasculature.
    Yu DH; Lu Q; Xie J; Fang C; Chen HZ
    Biomaterials; 2010 Mar; 31(8):2278-92. PubMed ID: 20053444
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Shape effect in cellular uptake of PEGylated nanoparticles: comparison between sphere, rod, cube and disk.
    Li Y; Kröger M; Liu WK
    Nanoscale; 2015 Oct; 7(40):16631-46. PubMed ID: 26204104
    [TBL] [Abstract][Full Text] [Related]  

  • 24. RGD functionalized polymeric nanoparticles targeting periodontitis epithelial cells for the enhanced treatment of periodontitis in dogs.
    Yao W; Xu P; Zhao J; Ling L; Li X; Zhang B; Cheng N; Pang Z
    J Colloid Interface Sci; 2015 Nov; 458():14-21. PubMed ID: 26197107
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Low density lipoprotein mimic nanoparticles composed of amphipathic hybrid peptides and lipids for tumor-targeted delivery of paclitaxel.
    Qian J; Xu N; Zhou X; Shi K; Du Q; Yin X; Zhao Z
    Int J Nanomedicine; 2019; 14():7431-7446. PubMed ID: 31686815
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Engineering Chimeric Receptors To Investigate the Size- and Rigidity-Dependent Interaction of PEGylated Nanoparticles with Cells.
    Huang WC; Burnouf PA; Su YC; Chen BM; Chuang KH; Lee CW; Wei PK; Cheng TL; Roffler SR
    ACS Nano; 2016 Jan; 10(1):648-62. PubMed ID: 26741147
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Matrix metalloprotein-triggered, cell penetrating peptide-modified star-shaped nanoparticles for tumor targeting and cancer therapy.
    Guo F; Fu Q; Zhou K; Jin C; Wu W; Ji X; Yan Q; Yang Q; Wu D; Li A; Yang G
    J Nanobiotechnology; 2020 Mar; 18(1):48. PubMed ID: 32183823
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Surface engineering of inorganic nanoparticles for imaging and therapy.
    Nam J; Won N; Bang J; Jin H; Park J; Jung S; Jung S; Park Y; Kim S
    Adv Drug Deliv Rev; 2013 May; 65(5):622-48. PubMed ID: 22975010
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The influence of surface charge on serum protein interaction and cellular uptake: studies with dendritic polyglycerols and dendritic polyglycerol-coated gold nanoparticles.
    Bewersdorff T; Vonnemann J; Kanik A; Haag R; Haase A
    Int J Nanomedicine; 2017; 12():2001-2019. PubMed ID: 28352171
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effect of poly(ethylene glycol) coating and monomer type on poly(alkyl cyanoacrylate) nanoparticle interactions with lipid monolayers and cells.
    Baghirov H; Melikishvili S; Mørch Y; Sulheim E; Åslund AKO; Hianik T; de Lange Davies C
    Colloids Surf B Biointerfaces; 2017 Feb; 150():373-383. PubMed ID: 27842930
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microfluidic platform for combinatorial synthesis and optimization of targeted nanoparticles for cancer therapy.
    Valencia PM; Pridgen EM; Rhee M; Langer R; Farokhzad OC; Karnik R
    ACS Nano; 2013 Dec; 7(12):10671-80. PubMed ID: 24215426
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Self-Assembled Core-Shell-Type Lipid-Polymer Hybrid Nanoparticles: Intracellular Trafficking and Relevance for Oral Absorption.
    Li Q; Xia D; Tao J; Shen A; He Y; Gan Y; Wang C
    J Pharm Sci; 2017 Oct; 106(10):3120-3130. PubMed ID: 28559042
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chitosan Nanoparticles for Nuclear Targeting: The Effect of Nanoparticle Size and Nuclear Localization Sequence Density.
    Tammam SN; Azzazy HM; Breitinger HG; Lamprecht A
    Mol Pharm; 2015 Dec; 12(12):4277-89. PubMed ID: 26465978
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multifunctional nanoplatform based on star-shaped copolymer for liver cancer targeting therapy.
    Gong X; Zheng Y; He G; Chen K; Zeng X; Chen Z
    Drug Deliv; 2019 Dec; 26(1):595-603. PubMed ID: 31195837
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Energy independent uptake and release of polystyrene nanoparticles in primary mammalian cell cultures.
    Fiorentino I; Gualtieri R; Barbato V; Mollo V; Braun S; Angrisani A; Turano M; Furia M; Netti PA; Guarnieri D; Fusco S; Talevi R
    Exp Cell Res; 2015 Jan; 330(2):240-247. PubMed ID: 25246129
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Gene delivery targeted to the brain using an Angiopep-conjugated polyethyleneglycol-modified polyamidoamine dendrimer.
    Ke W; Shao K; Huang R; Han L; Liu Y; Li J; Kuang Y; Ye L; Lou J; Jiang C
    Biomaterials; 2009 Dec; 30(36):6976-85. PubMed ID: 19765819
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nanoparticles functionalized with Pep-1 as potential glioma targeting delivery system via interleukin 13 receptor α2-mediated endocytosis.
    Wang B; Lv L; Wang Z; Zhao Y; Wu L; Fang X; Xu Q; Xin H
    Biomaterials; 2014 Jul; 35(22):5897-907. PubMed ID: 24743033
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The brain targeting mechanism of Angiopep-conjugated poly(ethylene glycol)-co-poly(ε-caprolactone) nanoparticles.
    Xin H; Sha X; Jiang X; Chen L; Law K; Gu J; Chen Y; Wang X; Fang X
    Biomaterials; 2012 Feb; 33(5):1673-81. PubMed ID: 22133551
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Combining Stimulus-Triggered Release and Active Targeting Strategies Improves Cytotoxicity of Cytochrome c Nanoparticles in Tumor Cells.
    Morales-Cruz M; Cruz-Montañez A; Figueroa CM; González-Robles T; Davila J; Inyushin M; Loza-Rosas SA; Molina AM; Muñoz-Perez L; Kucheryavykh LY; Tinoco AD; Griebenow K
    Mol Pharm; 2016 Aug; 13(8):2844-54. PubMed ID: 27283751
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The complex role of multivalency in nanoparticles targeting the transferrin receptor for cancer therapies.
    Wang J; Tian S; Petros RA; Napier ME; Desimone JM
    J Am Chem Soc; 2010 Aug; 132(32):11306-13. PubMed ID: 20698697
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.