These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1632 related articles for article (PubMed ID: 33073988)
1. Local and Targeted Delivery of Immune Checkpoint Blockade Therapeutics. Han X; Li H; Zhou D; Chen Z; Gu Z Acc Chem Res; 2020 Nov; 53(11):2521-2533. PubMed ID: 33073988 [TBL] [Abstract][Full Text] [Related]
2. Genetically engineered cellular nanoparticles loaded with curcuminoids for cancer immunotherapy. Liao Y; Zhao C; Pan Y; Guo Y; Liu L; Wu J; Zhang Y; Rao L; Li Q Theranostics; 2024; 14(16):6409-6425. PubMed ID: 39431008 [No Abstract] [Full Text] [Related]
3. A Small Molecule Antagonist of PD-1/PD-L1 Interactions Acts as an Immune Checkpoint Inhibitor for NSCLC and Melanoma Immunotherapy. Wang Y; Gu T; Tian X; Li W; Zhao R; Yang W; Gao Q; Li T; Shim JH; Zhang C; Liu K; Lee MH Front Immunol; 2021; 12():654463. PubMed ID: 34054817 [TBL] [Abstract][Full Text] [Related]
4. Transdermal cold atmospheric plasma-mediated immune checkpoint blockade therapy. Chen G; Chen Z; Wen D; Wang Z; Li H; Zeng Y; Dotti G; Wirz RE; Gu Z Proc Natl Acad Sci U S A; 2020 Feb; 117(7):3687-3692. PubMed ID: 32029590 [TBL] [Abstract][Full Text] [Related]
5. Nanomicelle protects the immune activation effects of Paclitaxel and sensitizes tumors to anti-PD-1 Immunotherapy. Yang Q; Shi G; Chen X; Lin Y; Cheng L; Jiang Q; Yan X; Jiang M; Li Y; Zhang H; Wang H; Wang Y; Wang Q; Zhang Y; Liu Y; Su X; Dai L; Tang M; Li J; Zhang L; Qian Z; Yu D; Deng H Theranostics; 2020; 10(18):8382-8399. PubMed ID: 32724476 [TBL] [Abstract][Full Text] [Related]
7. The Next Immune-Checkpoint Inhibitors: PD-1/PD-L1 Blockade in Melanoma. Mahoney KM; Freeman GJ; McDermott DF Clin Ther; 2015 Apr; 37(4):764-82. PubMed ID: 25823918 [TBL] [Abstract][Full Text] [Related]
8. Peptide vaccine-conjugated mesoporous carriers synergize with immunogenic cell death and PD-L1 blockade for amplified immunotherapy of metastatic spinal. Wang Z; Chen L; Ma Y; Li X; Hu A; Wang H; Wang W; Li X; Tian B; Dong J J Nanobiotechnology; 2021 Aug; 19(1):243. PubMed ID: 34384429 [TBL] [Abstract][Full Text] [Related]
9. Study and analysis of antitumor resistance mechanism of PD1/PD-L1 immune checkpoint blocker. Wang Z; Wu X Cancer Med; 2020 Nov; 9(21):8086-8121. PubMed ID: 32875727 [TBL] [Abstract][Full Text] [Related]
10. Combined Effects of Anti-PD-L1 and Nanosonodynamic Therapy on HCC Immune Activation in Mice: An Investigation. Wei M; Wang X; Mo Y; Kong C; Zhang M; Qiu G; Tang Z; Chen J; Wu F Int J Nanomedicine; 2024; 19():7215-7236. PubMed ID: 39050875 [TBL] [Abstract][Full Text] [Related]
11. Functionalized biomimetic nanoparticles combining programmed death-1/programmed death-ligand 1 blockade with photothermal ablation for enhanced colorectal cancer immunotherapy. Xiao Y; Zhu T; Zeng Q; Tan Q; Jiang G; Huang X Acta Biomater; 2023 Feb; 157():451-466. PubMed ID: 36442821 [TBL] [Abstract][Full Text] [Related]
12. Bioinspired and Biomimetic Nanomedicines. Chen Z; Wang Z; Gu Z Acc Chem Res; 2019 May; 52(5):1255-1264. PubMed ID: 30977635 [TBL] [Abstract][Full Text] [Related]
13. Design of an Injectable Polypeptide Hydrogel Depot Containing the Immune Checkpoint Blocker Anti-PD-L1 and Doxorubicin to Enhance Antitumor Combination Therapy. Shi Y; Li D; He C; Chen X Macromol Biosci; 2021 Jun; 21(6):e2100049. PubMed ID: 33871152 [TBL] [Abstract][Full Text] [Related]
14. Augmenting Anticancer Immunity Through Combined Targeting of Angiogenic and PD-1/PD-L1 Pathways: Challenges and Opportunities. Hack SP; Zhu AX; Wang Y Front Immunol; 2020; 11():598877. PubMed ID: 33250900 [TBL] [Abstract][Full Text] [Related]
15. Janus Silica Nanoparticle-Based Tumor Microenvironment Modulator for Restoring Tumor Sensitivity to Programmed Cell Death Ligand 1 Immune Checkpoint Blockade Therapy. Lin X; Li F; Guan J; Wang X; Yao C; Zeng Y; Liu X ACS Nano; 2023 Aug; 17(15):14494-14507. PubMed ID: 37485850 [TBL] [Abstract][Full Text] [Related]
16. Smart Nanosized Drug Delivery Systems Inducing Immunogenic Cell Death for Combination with Cancer Immunotherapy. Zhou L; Zhang P; Wang H; Wang D; Li Y Acc Chem Res; 2020 Sep; 53(9):1761-1772. PubMed ID: 32819102 [TBL] [Abstract][Full Text] [Related]
17. Anti-programmed cell death-1 and anti-programmed cell death ligand-1 immune-related liver diseases: from clinical pivotal studies to real-life experience. Vitale G; Lamberti G; Comito F; Di Nunno V; Massari F; Morelli MC; Ardizzoni A; Gelsomino F Expert Opin Biol Ther; 2020 Sep; 20(9):1047-1059. PubMed ID: 32425081 [TBL] [Abstract][Full Text] [Related]
18. Platelets as platforms for inhibition of tumor recurrence post-physical therapy by delivery of anti-PD-L1 checkpoint antibody. Han X; Chen J; Chu J; Liang C; Ma Q; Fan Q; Liu Z; Wang C J Control Release; 2019 Jun; 304():233-241. PubMed ID: 31071371 [TBL] [Abstract][Full Text] [Related]
19. Construction of a core-shell microneedle system to achieve targeted co-delivery of checkpoint inhibitors for melanoma immunotherapy. Yang P; Lu C; Qin W; Chen M; Quan G; Liu H; Wang L; Bai X; Pan X; Wu C Acta Biomater; 2020 Mar; 104():147-157. PubMed ID: 31904558 [TBL] [Abstract][Full Text] [Related]
20. Recent Advances in Stimuli-Responsive Platforms for Cancer Immunotherapy. Li L; Yang Z; Chen X Acc Chem Res; 2020 Oct; 53(10):2044-2054. PubMed ID: 32877161 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]