These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 33074049)

  • 1. Development of potential proteasome inhibitors against
    Tyagi R; Srivastava M; Jain P; Pandey RP; Asthana S; Kumar D; Raj VS
    J Biomol Struct Dyn; 2022 Mar; 40(5):2189-2203. PubMed ID: 33074049
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and validation of potent Mycobacterial proteasome inhibitor from Enamine library.
    Tyagi R; Srivastava M; Singh B; Sharma S; Pandey RP; Asthana S; Kumar D; Raj VS
    J Biomol Struct Dyn; 2022; 40(19):8644-8654. PubMed ID: 33955331
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of New
    Almeleebia TM; Shahrani MA; Alshahrani MY; Ahmad I; Alkahtani AM; Alam MJ; Kausar MA; Saeed A; Saeed M; Iram S
    Molecules; 2021 Apr; 26(8):. PubMed ID: 33923734
    [No Abstract]   [Full Text] [Related]  

  • 4. A multidrug efflux protein in Mycobacterium tuberculosis; tap as a potential drug target for drug repurposing.
    Dwivedi M; Mukhopadhyay S; Yadav S; Dubey KD
    Comput Biol Med; 2022 Jul; 146():105607. PubMed ID: 35617724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of glucosyl-3-phosphoglycerate phosphatase as a novel drug target against resistant strain of Mycobacterium tuberculosis (XDR1219) by using comparative metabolic pathway approach.
    Uddin R; Zahra NU; Azam SS
    Comput Biol Chem; 2019 Apr; 79():91-102. PubMed ID: 30743161
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In Silico Approach for Phytocompound-Based Drug Designing to Fight Efflux Pump-Mediated Multidrug-Resistant Mycobacterium tuberculosis.
    Biswas SS; Browne RB; Borah VV; Roy JD
    Appl Biochem Biotechnol; 2021 Jun; 193(6):1757-1779. PubMed ID: 33826064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis, Biological Evaluation and Molecular Docking Studies of New Pyrazolines as an Antitubercular and Cytotoxic Agents.
    Lokesh BVS; Prasad YR; Shaik AB
    Infect Disord Drug Targets; 2019; 19(3):310-321. PubMed ID: 30556506
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Jagadeb M; Rath SN; Sonawane A
    J Biomol Struct Dyn; 2019 Aug; 37(13):3388-3398. PubMed ID: 30132739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of a novel inhibitor of isocitrate lyase as a potent antitubercular agent against both active and non-replicating Mycobacterium tuberculosis.
    Liu Y; Zhou S; Deng Q; Li X; Meng J; Guan Y; Li C; Xiao C
    Tuberculosis (Edinb); 2016 Mar; 97():38-46. PubMed ID: 26980494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioisosteric modification of Linezolid identified the potential
    Girase R; Ahmad I; Patel H
    J Biomol Struct Dyn; 2024; 42(4):2111-2126. PubMed ID: 37097976
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discovery of new
    Mehra R; Chib R; Munagala G; Yempalla KR; Khan IA; Singh PP; Khan FG; Nargotra A
    Mol Divers; 2015 Nov; 19(4):1003-19. PubMed ID: 26232029
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of potent chemical antituberculosis agents targeting Mycobacterium tuberculosis acetohydroxyacid synthase.
    Jung IP; Ha NR; Lee SC; Ryoo SW; Yoon MY
    Int J Antimicrob Agents; 2016 Sep; 48(3):247-58. PubMed ID: 27451857
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring biogenic chalcones as DprE1 inhibitors for antitubercular activity via in silico approach.
    Rathod S; Chavan P; Mahuli D; Rochlani S; Shinde S; Pawar S; Choudhari P; Dhavale R; Mudalkar P; Tamboli F
    J Mol Model; 2023 Mar; 29(4):113. PubMed ID: 36971900
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular modelling and competitive inhibition of a Mycobacterium tuberculosis multidrug-resistance efflux pump.
    Scaini JLR; Camargo AD; Seus VR; von Groll A; Werhli AV; da Silva PEA; Machado KDS
    J Mol Graph Model; 2019 Mar; 87():98-108. PubMed ID: 30529931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An integrated computational approach of molecular dynamics simulations, receptor binding studies and pharmacophore mapping analysis in search of potent inhibitors against tuberculosis.
    Agarwal S; Verma E; Kumar V; Lall N; Sau S; Iyer AK; Kashaw SK
    J Mol Graph Model; 2018 Aug; 83():17-32. PubMed ID: 29753941
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular docking, molecular dynamics simulations and binding free energy studies of interactions between Mycobacterium tuberculosis Pks13, PknG and bioactive constituents of extremophilic bacteria.
    Nyambo K; Tapfuma KI; Adu-Amankwaah F; Julius L; Baatjies L; Niang IS; Smith L; Govender KK; Ngxande M; Watson DJ; Wiesner L; Mavumengwana V
    Sci Rep; 2024 Mar; 14(1):6794. PubMed ID: 38514663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis, antitubercular profile and molecular docking studies of quinazolinone-based pyridine derivatives against drug-resistant tuberculosis.
    Raghu MS; Yogesh Kumar K; Shamala T; Alharti FA; Prashanth MK; Jeon BH
    J Biomol Struct Dyn; 2024 Apr; 42(7):3307-3317. PubMed ID: 37261798
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Qureshi KA; Azam F; Fatmi MQ; Imtiaz M; Prajapati DK; Rai PK; Jaremko M; Emwas AH; Elhassan GO
    PeerJ; 2023; 11():e14502. PubMed ID: 36935926
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of Novel Antimicrobial Compounds Targeting
    Ito H; Monobe K; Okubo S; Aoki S
    Molecules; 2024 Mar; 29(6):. PubMed ID: 38542939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Screening of antitubercular compound library identifies novel ATP synthase inhibitors of Mycobacterium tuberculosis.
    Kumar S; Mehra R; Sharma S; Bokolia NP; Raina D; Nargotra A; Singh PP; Khan IA
    Tuberculosis (Edinb); 2018 Jan; 108():56-63. PubMed ID: 29523328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.