These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 33074403)

  • 21. Impact of altered lower limb proprioception produced by tendon vibration on adaptation to split-belt treadmill walking.
    Layne CS; Chelette AM; Pourmoghaddam A
    Somatosens Mot Res; 2015; 32(1):31-8. PubMed ID: 25162146
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Split-belt treadmill adaptation transfers to overground walking in persons poststroke.
    Reisman DS; Wityk R; Silver K; Bastian AJ
    Neurorehabil Neural Repair; 2009 Sep; 23(7):735-44. PubMed ID: 19307434
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spatial and temporal asymmetries in gait predict split-belt adaptation behavior in stroke.
    Malone LA; Bastian AJ
    Neurorehabil Neural Repair; 2014; 28(3):230-40. PubMed ID: 24243917
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Predictive control of ankle stiffness at heel contact is a key element of locomotor adaptation during split-belt treadmill walking in humans.
    Ogawa T; Kawashima N; Ogata T; Nakazawa K
    J Neurophysiol; 2014 Feb; 111(4):722-32. PubMed ID: 24225544
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Split-belt walking: An experience that is hard to forget.
    Buurke TJW; Sharma N; Swart SB; van der Woude LHV; den Otter R; Lamoth CJC
    Gait Posture; 2022 Sep; 97():184-187. PubMed ID: 35986959
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Adaptations in interlimb and intralimb coordination to asymmetrical loading in human walking.
    Haddad JM; van Emmerik RE; Whittlesey SN; Hamill J
    Gait Posture; 2006 Jun; 23(4):429-34. PubMed ID: 16099160
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Augmenting propulsion demands during split-belt walking increases locomotor adaptation of asymmetric step lengths.
    Sombric CJ; Torres-Oviedo G
    J Neuroeng Rehabil; 2020 Jun; 17(1):69. PubMed ID: 32493440
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A novel optic flow pattern speeds split-belt locomotor adaptation.
    Finley JM; Statton MA; Bastian AJ
    J Neurophysiol; 2014 Mar; 111(5):969-76. PubMed ID: 24335220
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Adaptational and learning processes during human split-belt locomotion: interaction between central mechanisms and afferent input.
    Prokop T; Berger W; Zijlstra W; Dietz V
    Exp Brain Res; 1995; 106(3):449-56. PubMed ID: 8983988
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Gait symmetric adaptation: Comparing effects of implicit visual distortion versus split-belt treadmill on aftereffects of adapted step length symmetry.
    Chunduru P; Kim SJ; Lee H
    Hum Mov Sci; 2019 Aug; 66():186-197. PubMed ID: 31063927
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterizing dynamic balance during adaptive locomotor learning.
    Park S; Finley JM
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():50-53. PubMed ID: 29059808
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Velocity-dependent transfer of adaptation in human running as revealed by split-belt treadmill adaptation.
    Ogawa T; Obata H; Yokoyama H; Kawashima N; Nakazawa K
    Exp Brain Res; 2018 Apr; 236(4):1019-1029. PubMed ID: 29411081
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Taking advantage of external mechanical work to reduce metabolic cost: the mechanics and energetics of split-belt treadmill walking.
    Sánchez N; Simha SN; Donelan JM; Finley JM
    J Physiol; 2019 Aug; 597(15):4053-4068. PubMed ID: 31192458
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Manual stabilization reveals a transient role for balance control during locomotor adaptation.
    Park S; Finley JM
    J Neurophysiol; 2022 Oct; 128(4):808-818. PubMed ID: 35946807
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Incremental Visual Occlusion During Split-Belt Treadmill Walking Has No Gradient Effect on Adaptation or Retention.
    Stone AE; Hockman AC; Roper JA; Hass CJ
    Percept Mot Skills; 2021 Dec; 128(6):2490-2506. PubMed ID: 34590936
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mode-dependent control of human walking and running as revealed by split-belt locomotor adaptation.
    Ogawa T; Kawashima N; Obata H; Kanosue K; Nakazawa K
    J Exp Biol; 2015 Oct; 218(Pt 20):3192-8. PubMed ID: 26276863
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Kinetic adaptation during locomotion on a split-belt treadmill.
    Mawase F; Haizler T; Bar-Haim S; Karniel A
    J Neurophysiol; 2013 Apr; 109(8):2216-27. PubMed ID: 23365187
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gait asymmetry during early split-belt walking is related to perception of belt speed difference.
    Hoogkamer W; Bruijn SM; Potocanac Z; Van Calenbergh F; Swinnen SP; Duysens J
    J Neurophysiol; 2015 Sep; 114(3):1705-12. PubMed ID: 26203114
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A single exercise bout and locomotor learning after stroke: physiological, behavioural, and computational outcomes.
    Charalambous CC; Alcantara CC; French MA; Li X; Matt KS; Kim HE; Morton SM; Reisman DS
    J Physiol; 2018 May; 596(10):1999-2016. PubMed ID: 29569729
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adaptation and aftereffects of split-belt walking in cerebellar lesion patients.
    Hoogkamer W; Bruijn SM; Sunaert S; Swinnen SP; Van Calenbergh F; Duysens J
    J Neurophysiol; 2015 Sep; 114(3):1693-704. PubMed ID: 26203113
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.