These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
246 related articles for article (PubMed ID: 33074416)
1. Swine manure valorization in fabrication of nutrition and energy. Giwa AS; Ali N; Asif M Appl Microbiol Biotechnol; 2020 Dec; 104(23):9921-9933. PubMed ID: 33074416 [TBL] [Abstract][Full Text] [Related]
2. Nutritional, Energy and Sanitary Aspects of Swine Manure and Carcass Co-digestion. Tápparo DC; Rogovski P; Cadamuro RD; Marques Souza DS; Bonatto C; Frumi Camargo A; Scapini T; Stefanski F; Amaral A; Kunz A; Hernández M; Treichel H; Rodríguez-Lázaro D; Fongaro G Front Bioeng Biotechnol; 2020; 8():333. PubMed ID: 32411682 [TBL] [Abstract][Full Text] [Related]
3. Influence of solid-liquid separation strategy on biogas yield from a stratified swine production system. Cestonaro do Amaral A; Kunz A; Radis Steinmetz RL; Scussiato LA; Tápparo DC; Gaspareto TC J Environ Manage; 2016 Mar; 168():229-35. PubMed ID: 26716354 [TBL] [Abstract][Full Text] [Related]
4. Assessing the potential for up-cycling recovered resources from anaerobic digestion through microbial protein production. Verbeeck K; De Vrieze J; Pikaar I; Verstraete W; Rabaey K Microb Biotechnol; 2021 May; 14(3):897-910. PubMed ID: 32525284 [TBL] [Abstract][Full Text] [Related]
5. Effect of temperature on continuous dry fermentation of swine manure. Deng L; Chen C; Zheng D; Yang H; Liu Y; Chen Z J Environ Manage; 2016 Jul; 177():247-52. PubMed ID: 27107950 [TBL] [Abstract][Full Text] [Related]
6. Influence of initial pH on thermophilic anaerobic co-digestion of swine manure and maize stalk. Zhang T; Mao C; Zhai N; Wang X; Yang G Waste Manag; 2015 Jan; 35():119-26. PubMed ID: 25442104 [TBL] [Abstract][Full Text] [Related]
7. Filamentous microalgae as an advantageous co-substrate for enhanced methane production and digestate dewaterability in anaerobic co-digestion of pig manure. Hu Y; Kumar M; Wang Z; Zhan X; Stengel DB Waste Manag; 2021 Jan; 119():399-407. PubMed ID: 33191051 [TBL] [Abstract][Full Text] [Related]
8. Sanitary effectiveness and biogas yield by anaerobic co-digestion of swine carcasses and manure. Tápparo DC; Viancelli A; Amaral ACD; Fongaro G; Steinmetz RLR; Magri ME; Barardi CRM; Kunz A Environ Technol; 2020 Feb; 41(6):682-690. PubMed ID: 30080477 [TBL] [Abstract][Full Text] [Related]
9. Consequential environmental life cycle assessment of a farm-scale biogas plant. Van Stappen F; Mathot M; Decruyenaere V; Loriers A; Delcour A; Planchon V; Goffart JP; Stilmant D J Environ Manage; 2016 Jun; 175():20-32. PubMed ID: 27017269 [TBL] [Abstract][Full Text] [Related]
10. Impact of lowering nitrogen content in pig manure through low crude protein diets on anaerobic digestion process stability, biogas yields, and digestate composition. Hickmann FMW; Salahshournia B; Andretta I; Létourneau-Montminy MP; Rajagopal R Sci Total Environ; 2024 Nov; 953():175957. PubMed ID: 39226967 [TBL] [Abstract][Full Text] [Related]
11. The survival of pathogenic bacteria and plant growth promoting bacteria during mesophilic anaerobic digestion in full-scale biogas plants. Qi G; Pan Z; Yamamoto Y; Andriamanohiarisoamanana FJ; Yamashiro T; Iwasaki M; Ihara I; Tangtaweewipat S; Umetsu K Anim Sci J; 2019 Feb; 90(2):297-303. PubMed ID: 30554439 [TBL] [Abstract][Full Text] [Related]
12. Thermal post-treatment of digestate in order to increase biogas production with simultaneous pasteurization. Nordell E; Björn A; Waern S; Shakeri Yekta S; Sundgren I; Moestedt J J Biotechnol; 2022 Jan; 344():32-39. PubMed ID: 34929206 [TBL] [Abstract][Full Text] [Related]
13. Effect of organic loading rate on anaerobic digestion of pig manure: Methane production, mass flow, reactor scale and heating scenarios. Duan N; Zhang D; Lin C; Zhang Y; Zhao L; Liu H; Liu Z J Environ Manage; 2019 Feb; 231():646-652. PubMed ID: 30390449 [TBL] [Abstract][Full Text] [Related]
14. Thermophilic co-digestion of pig manure and crude glycerol: process performance and digestate stability. Astals S; Nolla-Ardèvol V; Mata-Alvarez J J Biotechnol; 2013 Jul; 166(3):97-104. PubMed ID: 23685137 [TBL] [Abstract][Full Text] [Related]
15. Fermentative hydrogen and methane co-production from anaerobic co-digestion of organic wastes at high loading rate coupling continuously and sequencing batch digesters. Farhat A; Miladi B; Hamdi M; Bouallagui H Environ Sci Pollut Res Int; 2018 Oct; 25(28):27945-27958. PubMed ID: 30058041 [TBL] [Abstract][Full Text] [Related]
16. Pretreatment of poultry manure for efficient biogas production as monosubstrate or co-fermentation with maize silage and corn stover. Böjti T; Kovács KL; Kakuk B; Wirth R; Rákhely G; Bagi Z Anaerobe; 2017 Aug; 46():138-145. PubMed ID: 28351698 [TBL] [Abstract][Full Text] [Related]
17. Improved biogas production of dry anaerobic digestion of swine manure. Xiao Y; Yang H; Yang H; Wang H; Zheng D; Liu Y; Pu X; Deng L Bioresour Technol; 2019 Dec; 294():122188. PubMed ID: 31569044 [TBL] [Abstract][Full Text] [Related]
18. Improving two-stage thermophilic-mesophilic anaerobic co-digestion of swine manure and rice straw by digestate recirculation. Chen H; Zhang W; Wu J; Chen X; Liu R; Han Y; Xiao B; Yu Z; Peng Y Chemosphere; 2021 Jul; 274():129787. PubMed ID: 33540305 [TBL] [Abstract][Full Text] [Related]
19. Biogas production, waste stabilization efficiency, and hygienization potential of a mesophilic anaerobic plug flow reactor processing swine manure and corn stover. Arias DE; Veluchamy C; Habash MB; Gilroyed BH J Environ Manage; 2021 Apr; 284():112027. PubMed ID: 33516982 [TBL] [Abstract][Full Text] [Related]
20. Low cost digester monitoring under realistic conditions: Rural use of biogas and digestate quality. Castro L; Escalante H; Jaimes-Estévez J; Díaz LJ; Vecino K; Rojas G; Mantilla L Bioresour Technol; 2017 Sep; 239():311-317. PubMed ID: 28531856 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]