These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 33074576)

  • 1. A comparison of three shoe sole impression lifting methods at high substrate temperatures.
    Taylor KM; Krosch MN; Chaseling J; Wright K
    J Forensic Sci; 2021 Jan; 66(1):303-314. PubMed ID: 33074576
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Location distribution of randomly acquired characteristics on a shoe sole.
    Kaplan-Damary N; Mandel M; Yekutieli Y; Shor Y; Wiesner S
    J Forensic Sci; 2022 Sep; 67(5):1801-1809. PubMed ID: 35855550
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Collection of Wet-Origin Footwear Impressions on Various Surfaces Using an Electrostatic Dust Print Lifter.
    Hong S; Park M
    J Forensic Sci; 2018 Sep; 63(5):1516-1520. PubMed ID: 29351360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ShoeCase: A data set of mock crime scene footwear impressions.
    Tibben A; McGuire M; Renfro S; Carriquiry A
    Data Brief; 2023 Oct; 50():109546. PubMed ID: 37780466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inherent variation in multiple shoe-sole test impressions.
    Shor Y; Wiesner S; Tsach T; Gurel R; Yekutieli Y
    Forensic Sci Int; 2018 Apr; 285():189-203. PubMed ID: 29428777
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Comparison of Various Fixatives for Casting Footwear Impressions in Sand at Crime Scenes.
    Battiest T; Clutter SW; McGill D
    J Forensic Sci; 2016 May; 61(3):782-6. PubMed ID: 27122420
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An improved technique to enable 2-dimensional shoe sole impression evidence to be photographically recorded "to scale".
    Hall BR; Nolan AM
    J Forensic Sci; 1994 Jul; 39(4):1094-9. PubMed ID: 8064268
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimate of the random match frequency of acquired characteristics in footwear: Part II - Impressions in dust.
    Smale AN; Speir JA
    Sci Justice; 2024 Jan; 64(1):134-150. PubMed ID: 38182308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Optimal Distance of the Electrode to the Lifting Film Surface when Lifting Dust Footwear Impressions Using an Electrostatic Dust Print Lifter.
    Xie D; Hong H; Li D; Duo S; Feng Y
    J Forensic Sci; 2019 Nov; 64(6):1873-1877. PubMed ID: 31237978
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimate of the random match frequency of acquired characteristics in footwear: Part I - Impressions in blood.
    Smale AN; Speir JA
    Sci Justice; 2024 Jan; 64(1):117-133. PubMed ID: 38182307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dependence among randomly acquired characteristics on shoeprints and their features.
    Kaplan Damary N; Mandel M; Wiesner S; Yekutieli Y; Shor Y; Spiegelman C
    Forensic Sci Int; 2018 Feb; 283():173-179. PubMed ID: 29324348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A simulated crime scene footwear impression database for teaching and research purposes.
    Lin ET; DeBat T; Speir JA
    J Forensic Sci; 2022 Mar; 67(2):726-734. PubMed ID: 34750820
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Technical note: The Next Step - a semi-automatic coding and comparison system for forensic footwear impressions.
    Daniel O; Levi A; Pertsev R; Issan Y; Pasternak Z; Cohen A
    Forensic Sci Int; 2022 Aug; 337():111378. PubMed ID: 35839684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation and comparison of the electrostatic dust print lifter and the electrostatic detection apparatus on the development of footwear impressions on paper.
    Craig CL; Hornsby BM; Riles M
    J Forensic Sci; 2006 Jul; 51(4):819-26. PubMed ID: 16882226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Digitally processing an image of a shoe impression in blood.
    Daniel O; Levi A; Chaikovsky A; Cohen Y
    J Forensic Sci; 2021 May; 66(3):1143-1147. PubMed ID: 33332705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative evaluation of footwear evidence: Initial workflow for an end-to-end system.
    Venkatasubramanian G; Hegde V; Lund SP; Iyer H; Herman M
    J Forensic Sci; 2021 Nov; 66(6):2232-2251. PubMed ID: 34374992
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dataset of Digitized RACs and Their Rarity Score Analysis for Strengthening Shoeprint Evidence.
    Wiesner S; Shor Y; Tsach T; Kaplan-Damary N; Yekutieli Y
    J Forensic Sci; 2020 May; 65(3):762-774. PubMed ID: 31738459
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative assessment of similarity between randomly acquired characteristics on high quality exemplars and crime scene impressions via analysis of feature size and shape.
    Richetelli N; Nobel M; Bodziak WJ; Speir JA
    Forensic Sci Int; 2017 Jan; 270():211-222. PubMed ID: 27838107
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-dimensional metric comparisons between dynamic bare footprints and insole foot impressions-forensic implications.
    Nirenberg MS; Ansert E; Krishan K; Kanchan T
    Sci Justice; 2020 Mar; 60(2):145-150. PubMed ID: 32111287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing the quality of footwear marks recovered from simulated graves.
    Stephens M; Errickson D; Giles SB; Ringrose TJ
    Sci Justice; 2020 Nov; 60(6):512-521. PubMed ID: 33077034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.