These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 33074664)

  • 1. Efficient Reduced-Scaling Second-Order Møller-Plesset Perturbation Theory with Cholesky-Decomposed Densities and an Attenuated Coulomb Metric.
    Glasbrenner M; Graf D; Ochsenfeld C
    J Chem Theory Comput; 2020 Nov; 16(11):6856-6868. PubMed ID: 33074664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cholesky-decomposed densities in Laplace-based second-order Møller-Plesset perturbation theory.
    Zienau J; Clin L; Doser B; Ochsenfeld C
    J Chem Phys; 2009 May; 130(20):204112. PubMed ID: 19485442
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient low-scaling computation of NMR shieldings at the second-order Møller-Plesset perturbation theory level with Cholesky-decomposed densities and an attenuated Coulomb metric.
    Glasbrenner M; Vogler S; Ochsenfeld C
    J Chem Phys; 2021 Dec; 155(22):224107. PubMed ID: 34911319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-Scaling Tensor Hypercontraction in the Cholesky Molecular Orbital Basis Applied to Second-Order Møller-Plesset Perturbation Theory.
    Bangerter FH; Glasbrenner M; Ochsenfeld C
    J Chem Theory Comput; 2021 Jan; 17(1):211-221. PubMed ID: 33375790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cholesky-decomposed density MP2 with density fitting: accurate MP2 and double-hybrid DFT energies for large systems.
    Maurer SA; Clin L; Ochsenfeld C
    J Chem Phys; 2014 Jun; 140(22):224112. PubMed ID: 24929379
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tensor-Hypercontracted MP2 First Derivatives: Runtime and Memory Efficient Computation of Hyperfine Coupling Constants.
    Bangerter FH; Glasbrenner M; Ochsenfeld C
    J Chem Theory Comput; 2022 Sep; 18(9):5233-5245. PubMed ID: 35943450
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-scaling first-order properties within second-order Møller-Plesset perturbation theory using Cholesky decomposed density matrices.
    Vogler S; Ludwig M; Maurer M; Ochsenfeld C
    J Chem Phys; 2017 Jul; 147(2):024101. PubMed ID: 28711065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sparse maps—A systematic infrastructure for reduced-scaling electronic structure methods. I. An efficient and simple linear scaling local MP2 method that uses an intermediate basis of pair natural orbitals.
    Pinski P; Riplinger C; Valeev EF; Neese F
    J Chem Phys; 2015 Jul; 143(3):034108. PubMed ID: 26203015
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient distance-including integral screening in linear-scaling Møller-Plesset perturbation theory.
    Maurer SA; Lambrecht DS; Kussmann J; Ochsenfeld C
    J Chem Phys; 2013 Jan; 138(1):014101. PubMed ID: 23298022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resolution-of-the-identity second-order Møller-Plesset perturbation theory with complex basis functions: Benchmark calculations and applications to strong-field ionization of polyacenes.
    Hernández Vera M; Jagau TC
    J Chem Phys; 2020 May; 152(17):174103. PubMed ID: 32384845
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Derivation of general analytic gradient expressions for density-fitted post-Hartree-Fock methods: an efficient implementation for the density-fitted second-order Møller-Plesset perturbation theory.
    Bozkaya U
    J Chem Phys; 2014 Sep; 141(12):124108. PubMed ID: 25273413
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coulomb-only second-order perturbation theory in long-range-corrected hybrid density functionals.
    Janesko BG; Scuseria GE
    Phys Chem Chem Phys; 2009 Nov; 11(42):9677-86. PubMed ID: 19851545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Linear-scaling implementation of the direct random-phase approximation.
    Kállay M
    J Chem Phys; 2015 May; 142(20):204105. PubMed ID: 26026432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Benchmarking the accuracy of the separable resolution of the identity approach for correlated methods in the numeric atom-centered orbitals framework.
    Delesma FA; Leucke M; Golze D; Rinke P
    J Chem Phys; 2024 Jan; 160(2):. PubMed ID: 38205851
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient linear-scaling second-order Møller-Plesset perturbation theory: The divide-expand-consolidate RI-MP2 model.
    Baudin P; Ettenhuber P; Reine S; Kristensen K; Kjærgaard T
    J Chem Phys; 2016 Feb; 144(5):054102. PubMed ID: 26851903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-Scaling, Efficient and Memory Optimized Computation of Nuclear Magnetic Resonance Shieldings within the Random Phase Approximation Using Cholesky-Decomposed Densities and an Attenuated Coulomb Metric.
    Drontschenko V; Ochsenfeld C
    J Phys Chem A; 2024 Sep; 128(37):7950-7965. PubMed ID: 39239944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient Structure Optimization with Second-Order Many-Body Perturbation Theory: The RIJCOSX-MP2 Method.
    Kossmann S; Neese F
    J Chem Theory Comput; 2010 Aug; 6(8):2325-38. PubMed ID: 26613489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stochastic Formulation of the Resolution of Identity: Application to Second Order Møller-Plesset Perturbation Theory.
    Takeshita TY; de Jong WA; Neuhauser D; Baer R; Rabani E
    J Chem Theory Comput; 2017 Oct; 13(10):4605-4610. PubMed ID: 28914534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast computation of molecular random phase approximation correlation energies using resolution of the identity and imaginary frequency integration.
    Eshuis H; Yarkony J; Furche F
    J Chem Phys; 2010 Jun; 132(23):234114. PubMed ID: 20572696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Linear-scaling symmetry-adapted perturbation theory with scaled dispersion.
    Maurer SA; Beer M; Lambrecht DS; Ochsenfeld C
    J Chem Phys; 2013 Nov; 139(18):184104. PubMed ID: 24320251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.