BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 33074934)

  • 1. The placenta as the window to congenital heart disease.
    Cohen JA; Rychik J; Savla JJ
    Curr Opin Cardiol; 2021 Jan; 36(1):56-60. PubMed ID: 33074934
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Placental delayed villous maturation is associated with fetal congenital heart disease.
    O'Hare CB; Mangin-Heimos KS; Gu H; Edmunds M; Bebbington M; Lee CK; He M; Ortinau CM
    Am J Obstet Gynecol; 2023 Feb; 228(2):231.e1-231.e11. PubMed ID: 35985515
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuroplacentology in congenital heart disease: placental connections to neurodevelopmental outcomes.
    Leon RL; Mir IN; Herrera CL; Sharma K; Spong CY; Twickler DM; Chalak LF
    Pediatr Res; 2022 Mar; 91(4):787-794. PubMed ID: 33864014
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Placental vascular malperfusion lesions in fetal congenital heart disease.
    Leon RL; Sharma K; Mir IN; Herrera CL; Brown SL; Spong CY; Chalak LF
    Am J Obstet Gynecol; 2022 Oct; 227(4):620.e1-620.e8. PubMed ID: 35609643
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An integrated model of preeclampsia: a multifaceted syndrome of the maternal cardiovascular-placental-fetal array.
    Yagel S; Cohen SM; Goldman-Wohl D
    Am J Obstet Gynecol; 2022 Feb; 226(2S):S963-S972. PubMed ID: 33712272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptations of the human placenta to hypoxia: opportunities for interventions in fetal growth restriction.
    Colson A; Sonveaux P; Debiève F; Sferruzzi-Perri AN
    Hum Reprod Update; 2021 Apr; 27(3):531-569. PubMed ID: 33377492
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Factors related to fetal demise in cases with congenital heart defects.
    Snoep MC; Bet BB; Zwanenburg F; Knobbe I; Linskens IH; Pajkrt E; Rozendaal L; Van der Meeren LE; Clur SA; Haak MC
    Am J Obstet Gynecol MFM; 2023 Aug; 5(8):101023. PubMed ID: 37220848
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Placenta in Congenital Heart Disease: Form, Function and Outcomes.
    Josowitz R; Linn R; Rychik J
    Neoreviews; 2023 Sep; 24(9):e569-e582. PubMed ID: 37653088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Placenta morphology and biomarkers in pregnancies with congenital heart disease - A systematic review.
    Snoep MC; Aliasi M; van der Meeren LE; Jongbloed MRM; DeRuiter MC; Haak MC
    Placenta; 2021 Sep; 112():189-196. PubMed ID: 34388551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the Placenta in the Newborn with Congenital Heart Disease: Distinctions Based on Type of Cardiac Malformation.
    Rychik J; Goff D; McKay E; Mott A; Tian Z; Licht DJ; Gaynor JW
    Pediatr Cardiol; 2018 Aug; 39(6):1165-1171. PubMed ID: 29728721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3-D volumetric MRI evaluation of the placenta in fetuses with complex congenital heart disease.
    Andescavage N; Yarish A; Donofrio M; Bulas D; Evangelou I; Vezina G; McCarter R; duPlessis A; Limperopoulos C
    Placenta; 2015 Sep; 36(9):1024-30. PubMed ID: 26190037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shared developmental pathways of the placenta and fetal heart.
    Mahadevan A; Tipler A; Jones H
    Placenta; 2023 Sep; 141():35-42. PubMed ID: 36604258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-Invasive Placental Perfusion Imaging in Pregnancies Complicated by Fetal Heart Disease Using Velocity-Selective Arterial Spin Labeled MRI.
    Zun Z; Zaharchuk G; Andescavage NN; Donofrio MT; Limperopoulos C
    Sci Rep; 2017 Nov; 7(1):16126. PubMed ID: 29170468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Placental Pathology Contributes to Impaired Volumetric Brain Development in Neonates With Congenital Heart Disease.
    Nijman M; van der Meeren LE; Nikkels PGJ; Stegeman R; Breur JMPJ; Jansen NJG; Ter Heide H; Steenhuis TJ; de Heus R; Bekker MN; Claessens NHP; Benders MJNL;
    J Am Heart Assoc; 2024 Mar; 13(5):e033189. PubMed ID: 38420785
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In utero exposure to venlafaxine, a serotonin-norepinephrine reuptake inhibitor, increases cardiac anomalies and alters placental and heart serotonin signaling in the rat.
    Laurent L; Huang C; Ernest SR; Berard A; Vaillancourt C; Hales BF
    Birth Defects Res A Clin Mol Teratol; 2016 Dec; 106(12):1044-1055. PubMed ID: 27384265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interdependence of placenta and fetal cardiac development.
    Leon RL; Bitar L; Rajagopalan V; Spong CY
    Prenat Diagn; 2024 Jun; 44(6-7):846-855. PubMed ID: 38676696
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of the placenta in fetal programming: underlying mechanisms and potential interventional approaches.
    Jansson T; Powell TL
    Clin Sci (Lond); 2007 Jul; 113(1):1-13. PubMed ID: 17536998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent Advances in Placenta-Heart Interactions.
    Maslen CL
    Front Physiol; 2018; 9():735. PubMed ID: 29962966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Longitudinal changes in fetal head biometry and fetoplacental circulation in fetuses with congenital heart defects.
    Ordás P; Rodríguez R; Herrero B; Deiros L; Gómez E; Llurba E; Bartha JL; Antolín E
    Acta Obstet Gynecol Scand; 2022 Sep; 101(9):987-995. PubMed ID: 35726340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inactivation of maternal Hif-1α at mid-pregnancy causes placental defects and deficits in oxygen delivery to the fetal organs under hypoxic stress.
    Kenchegowda D; Natale B; Lemus MA; Natale DR; Fisher SA
    Dev Biol; 2017 Feb; 422(2):171-185. PubMed ID: 27940158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.