These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 33075339)

  • 21. Reinforcing poly(epsilon-caprolactone) nanofibers with cellulose nanocrystals.
    Zoppe JO; Peresin MS; Habibi Y; Venditti RA; Rojas OJ
    ACS Appl Mater Interfaces; 2009 Sep; 1(9):1996-2004. PubMed ID: 20355825
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanochemically functionalized and fibrillated microcrystalline cellulose as a filler in silicone foam: An integrated experimental and simulation investigation.
    Lee K; Sim YL; Jeong H; Kim A; Lee Y; Shim SE; Qian Y
    Carbohydr Polym; 2024 Mar; 327():121660. PubMed ID: 38171679
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chemical modification of cellulose by in situ reactive extrusion in ionic liquid.
    Zhang Y; Li H; Li X; Gibril ME; Yu M
    Carbohydr Polym; 2014 Jan; 99():126-31. PubMed ID: 24274488
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of the amount of 3-methacyloxypropyltrimethoxysilane coupling agent on physical properties of dental resin nanocomposites.
    Sideridou ID; Karabela MM
    Dent Mater; 2009 Nov; 25(11):1315-24. PubMed ID: 19580996
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Adsorption performance of creatinine on dialdehyde nanofibrillated cellulose derived from potato residues.
    Cui D; Liu Z; Yang Y; Huang R; Cheng X; Fatehi P; Sun B
    Biotechnol Prog; 2016; 32(1):208-14. PubMed ID: 26400046
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Thermal and dynamic mechanical properties of cellulose nanofibers reinforced epoxy composites.
    Saba N; Safwan A; Sanyang ML; Mohammad F; Pervaiz M; Jawaid M; Alothman OY; Sain M
    Int J Biol Macromol; 2017 Sep; 102():822-828. PubMed ID: 28455253
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanical, physical and tribological characterization of nano-cellulose fibers reinforced bio-epoxy composites: An attempt to fabricate and scale the 'Green' composite.
    Barari B; Omrani E; Dorri Moghadam A; Menezes PL; Pillai KM; Rohatgi PK
    Carbohydr Polym; 2016 Aug; 147():282-293. PubMed ID: 27178934
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Surface functionalized nanofibrillar cellulose (NFC) film as a platform for immunoassays and diagnostics.
    Orelma H; Filpponen I; Johansson LS; Osterberg M; Rojas OJ; Laine J
    Biointerphases; 2012 Dec; 7(1-4):61. PubMed ID: 23055097
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A method for the heterogeneous modification of nanofibrillar cellulose in aqueous media.
    Junka K; Filpponen I; Johansson LS; Kontturi E; Rojas OJ; Laine J
    Carbohydr Polym; 2014 Jan; 100():107-15. PubMed ID: 24188844
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ultrasound assisted polyacrylamide grafting on nano-fibrillated cellulose.
    Sanaeishoar H; Sabbaghan M; Argyropoulos DS
    Carbohydr Polym; 2018 Feb; 181():1071-1077. PubMed ID: 29253933
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multi-scale cellulose based new bio-aerogel composites with thermal super-insulating and tunable mechanical properties.
    Seantier B; Bendahou D; Bendahou A; Grohens Y; Kaddami H
    Carbohydr Polym; 2016 Mar; 138():335-48. PubMed ID: 26794770
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantitative and Qualitative Analysis of Surface Modified Cellulose Utilizing TGA-MS.
    Loof D; Hiller M; Oschkinat H; Koschek K
    Materials (Basel); 2016 May; 9(6):. PubMed ID: 28773537
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Amine functionalization of microcrystalline cellulose assisted by (3-chloropropyl)triethoxysilane.
    Rafieian F; Mousavi M; Yu Q; Jonoobi M
    Int J Biol Macromol; 2019 Jun; 130():280-287. PubMed ID: 30772406
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In vitro investigation of the influence of nano-fibrillated cellulose on lipid digestion and absorption.
    Liu L; Kong F
    Int J Biol Macromol; 2019 Oct; 139():361-366. PubMed ID: 31369785
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Control of size and viscoelastic properties of nanofibrillated cellulose from palm tree by varying the TEMPO-mediated oxidation time.
    Benhamou K; Dufresne A; Magnin A; Mortha G; Kaddami H
    Carbohydr Polym; 2014 Jan; 99():74-83. PubMed ID: 24274481
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Oxolane-2,5-dione modified electrospun cellulose nanofibers for heavy metals adsorption.
    Stephen M; Catherine N; Brenda M; Andrew K; Leslie P; Corrine G
    J Hazard Mater; 2011 Aug; 192(2):922-7. PubMed ID: 21715091
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison of multilayer formation between different cellulose nanofibrils and cationic polymers.
    Eronen P; Laine J; Ruokolainen J; Osterberg M
    J Colloid Interface Sci; 2012 May; 373(1):84-93. PubMed ID: 21993549
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of a silane coupling agent on the mechanical properties of a microfibrillated cellulose composite.
    Ifuku S; Yano H
    Int J Biol Macromol; 2015 Mar; 74():428-32. PubMed ID: 25575951
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Study on Controlling the Surface Structure and Properties of a Cellulose Nanocrystal Film Modified Using Alkoxysilanes in Green Solvents.
    Taniyama H; Takagi K
    Langmuir; 2022 May; 38(18):5550-5556. PubMed ID: 35438508
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Surface cationized cellulose nanofibrils for the production of contact active antimicrobial surfaces.
    Saini S; Yücel Falco Ç; Belgacem MN; Bras J
    Carbohydr Polym; 2016 Jan; 135():239-47. PubMed ID: 26453874
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.