BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 33075486)

  • 1. Crystal structure and enzymatic characterization of the putative adenylyl cyclase HpAC1 from Hippeastrum reveal dominant triphosphatase activity.
    Kleinboelting S; Miehling J; Steegborn C
    J Struct Biol; 2020 Dec; 212(3):107649. PubMed ID: 33075486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular cloning and characterization of a novel adenylyl cyclase gene, HpAC1, involved in stress signaling in Hippeastrum x hybridum.
    Swieżawska B; Jaworski K; Pawełek A; Grzegorzewska W; Szewczuk P; Szmidt-Jaworska A
    Plant Physiol Biochem; 2014 Jul; 80():41-52. PubMed ID: 24721550
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural analysis of human soluble adenylyl cyclase and crystal structures of its nucleotide complexes-implications for cyclase catalysis and evolution.
    Kleinboelting S; van den Heuvel J; Steegborn C
    FEBS J; 2014 Sep; 281(18):4151-64. PubMed ID: 25040695
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Substrate specificity determinants of class III nucleotidyl cyclases.
    Bharambe NG; Barathy DV; Syed W; Visweswariah SS; Colaςo M; Misquith S; Suguna K
    FEBS J; 2016 Oct; 283(20):3723-3738. PubMed ID: 27542992
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and degradation of cAMP in
    Saraullo V; Di Siervi N; Jerez B; Davio C; Zurita A
    Biochem J; 2017 Nov; 474(23):4001-4017. PubMed ID: 29054977
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel mechanism for adenylyl cyclase inhibition from the crystal structure of its complex with catechol estrogen.
    Steegborn C; Litvin TN; Hess KC; Capper AB; Taussig R; Buck J; Levin LR; Wu H
    J Biol Chem; 2005 Sep; 280(36):31754-9. PubMed ID: 16002394
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brachypodium distachyon triphosphate tunnel metalloenzyme 3 is both a triphosphatase and an adenylyl cyclase upregulated by mechanical wounding.
    Świeżawska B; Duszyn M; Kwiatkowski M; Jaworski K; Pawełek A; Szmidt-Jaworska A
    FEBS Lett; 2020 Mar; 594(6):1101-1111. PubMed ID: 31785160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Autoinhibitory mechanism and activity-related structural changes in a mycobacterial adenylyl cyclase.
    Barathy DV; Bharambe NG; Syed W; Zaveri A; Visweswariah SS; Colaςo M; Misquith S; Suguna K
    J Struct Biol; 2015 Jun; 190(3):304-13. PubMed ID: 25916753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure of the catalytic domains of adenylyl cyclase in a complex with Gsalpha.GTPgammaS.
    Tesmer JJ; Sunahara RK; Gilman AG; Sprang SR
    Science; 1997 Dec; 278(5345):1907-16. PubMed ID: 9417641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bithionol Potently Inhibits Human Soluble Adenylyl Cyclase through Binding to the Allosteric Activator Site.
    Kleinboelting S; Ramos-Espiritu L; Buck H; Colis L; van den Heuvel J; Glickman JF; Levin LR; Buck J; Steegborn C
    J Biol Chem; 2016 Apr; 291(18):9776-84. PubMed ID: 26961873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The archaeal triphosphate tunnel metalloenzyme SaTTM defines structural determinants for the diverse activities in the CYTH protein family.
    Vogt MS; Ngouoko Nguepbeu RR; Mohr MKF; Albers SV; Essen LO; Banerjee A
    J Biol Chem; 2021 Jul; 297(1):100820. PubMed ID: 34029589
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A guanylyl cyclase from Paramecium with 22 transmembrane spans. Expression of the catalytic domains and formation of chimeras with the catalytic domains of mammalian adenylyl cyclases.
    Linder JU; Hoffmann T; Kurz U; Schultz JE
    J Biol Chem; 2000 Apr; 275(15):11235-40. PubMed ID: 10753932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular basis for P-site inhibition of adenylyl cyclase.
    Tesmer JJ; Dessauer CW; Sunahara RK; Murray LD; Johnson RA; Gilman AG; Sprang SR
    Biochemistry; 2000 Nov; 39(47):14464-71. PubMed ID: 11087399
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exchange of substrate and inhibitor specificities between adenylyl and guanylyl cyclases.
    Sunahara RK; Beuve A; Tesmer JJ; Sprang SR; Garbers DL; Gilman AG
    J Biol Chem; 1998 Jun; 273(26):16332-8. PubMed ID: 9632695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative electrostatic analysis of adenylyl cyclase for isoform dependent regulation properties.
    Tong R; Wade RC; Bruce NJ
    Proteins; 2016 Dec; 84(12):1844-1858. PubMed ID: 27667304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural basis for the inhibition of mammalian membrane adenylyl cyclase by 2 '(3')-O-(N-Methylanthraniloyl)-guanosine 5 '-triphosphate.
    Mou TC; Gille A; Fancy DA; Seifert R; Sprang SR
    J Biol Chem; 2005 Feb; 280(8):7253-61. PubMed ID: 15591060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bicarbonate activation of adenylyl cyclase via promotion of catalytic active site closure and metal recruitment.
    Steegborn C; Litvin TN; Levin LR; Buck J; Wu H
    Nat Struct Mol Biol; 2005 Jan; 12(1):32-7. PubMed ID: 15619637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CyaG, a novel cyanobacterial adenylyl cyclase and a possible ancestor of mammalian guanylyl cyclases.
    Kasahara M; Unno T; Yashiro K; Ohmori M
    J Biol Chem; 2001 Mar; 276(13):10564-9. PubMed ID: 11134014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The structure of a pH-sensing mycobacterial adenylyl cyclase holoenzyme.
    Tews I; Findeisen F; Sinning I; Schultz A; Schultz JE; Linder JU
    Science; 2005 May; 308(5724):1020-3. PubMed ID: 15890882
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Broad specificity of mammalian adenylyl cyclase for interaction with 2',3'-substituted purine- and pyrimidine nucleotide inhibitors.
    Mou TC; Gille A; Suryanarayana S; Richter M; Seifert R; Sprang SR
    Mol Pharmacol; 2006 Sep; 70(3):878-86. PubMed ID: 16766715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.