BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 33075557)

  • 1. Low-frequency dominant electrical conductivity imaging of in vivo human brain using high-frequency conductivity at Larmor-frequency and spherical mean diffusivity without external injection current.
    Jahng GH; Lee MB; Kim HJ; Je Woo E; Kwon OI
    Neuroimage; 2021 Jan; 225():117466. PubMed ID: 33075557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extracellular electrical conductivity property imaging by decomposition of high-frequency conductivity at Larmor-frequency using multi-b-value diffusion-weighted imaging.
    Lee MB; Jahng GH; Kim HJ; Woo EJ; Kwon OI
    PLoS One; 2020; 15(4):e0230903. PubMed ID: 32267858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decomposition of high-frequency electrical conductivity into extracellular and intracellular compartments based on two-compartment model using low-to-high multi-b diffusion MRI.
    Lee MB; Kim HJ; Kwon OI
    Biomed Eng Online; 2021 Mar; 20(1):29. PubMed ID: 33766044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High frequency conductivity decomposition by solving physically constraint underdetermined inverse problem in human brain.
    Kwon OI; Lee MB; Jahng GH
    Sci Rep; 2023 Feb; 13(1):3273. PubMed ID: 36841894
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Software Toolbox for Low-Frequency Conductivity and Current Density Imaging Using MRI.
    Sajib SZK; Katoch N; Kim HJ; Kwon OI; Woo EJ
    IEEE Trans Biomed Eng; 2017 Nov; 64(11):2505-2514. PubMed ID: 28767360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anisotropic conductivity tensor by analyzing diffusion tensor for electrical brain stimulation (EBS).
    Lee MB; Kim YH; Kim HJ; Kwon OI
    Phys Med Biol; 2018 Dec; 63(24):24NT04. PubMed ID: 30523812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validation of conductivity tensor imaging using giant vesicle suspensions with different ion mobilities.
    Choi BK; Katoch N; Kim HJ; Park JA; Ko IO; Kwon OI; Woo EJ
    Biomed Eng Online; 2020 May; 19(1):35. PubMed ID: 32448134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Frequency-dependent conductivity contrast for tissue characterization using a dual-frequency range conductivity mapping magnetic resonance method.
    Kim DH; Chauhan M; Kim MO; Jeong WC; Kim HJ; Sersa I; Kwon OI; Woo EJ
    IEEE Trans Med Imaging; 2015 Feb; 34(2):507-13. PubMed ID: 25312916
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrodeless conductivity tensor imaging (CTI) using MRI: basic theory and animal experiments.
    Sajib SZK; Kwon OI; Kim HJ; Woo EJ
    Biomed Eng Lett; 2018 Aug; 8(3):273-282. PubMed ID: 30603211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-frequency conductivity at Larmor-frequency in human brain using moving local window multilayer perceptron neural network.
    Lee MB; Jahng GH; Kim HJ; Kwon OI
    PLoS One; 2021; 16(5):e0251417. PubMed ID: 34014939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regional absolute conductivity reconstruction using projected current density in MREIT.
    Sajib SZ; Kim HJ; Kwon OI; Woo EJ
    Phys Med Biol; 2012 Sep; 57(18):5841-59. PubMed ID: 22951361
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conductivity Tensor Imaging of the Human Brain Using Water Mapping Techniques.
    Marino M; Cordero-Grande L; Mantini D; Ferrazzi G
    Front Neurosci; 2021; 15():694645. PubMed ID: 34393709
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrical conductivity and permittivity maps of brain tissues derived from water content based on T
    Michel E; Hernandez D; Lee SY
    Magn Reson Med; 2017 Mar; 77(3):1094-1103. PubMed ID: 26946979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extracellular Total Electrolyte Concentration Imaging for Electrical Brain Stimulation (EBS).
    Sajib SZK; Lee MB; Kim HJ; Woo EJ; Kwon OI
    Sci Rep; 2018 Jan; 8(1):290. PubMed ID: 29321483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conductivity Tensor Imaging of In Vivo Human Brain and Experimental Validation Using Giant Vesicle Suspension.
    Katoch N; Choi BK; Sajib SZK; Lee E; Kim HJ; Kwon OI; Woo EJ
    IEEE Trans Med Imaging; 2019 Jul; 38(7):1569-1577. PubMed ID: 30507528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement of extracellular volume fraction using magnetic resonance-based conductivity tensor imaging.
    Choi BK; Katoch N; Park JA; Kim JW; Oh TI; Kim HJ; Woo EJ
    Front Physiol; 2023; 14():1132911. PubMed ID: 36875031
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous imaging of dual-frequency electrical conductivity using a combination of MREIT and MREPT.
    Kim HJ; Jeong WC; Sajib SZ; Kim MO; Kwon OI; Je Woo E; Kim DH
    Magn Reson Med; 2014 Jan; 71(1):200-8. PubMed ID: 23400804
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new method to derive white matter conductivity from diffusion tensor MRI.
    Wang K; Zhu S; Mueller BA; Lim KO; Liu Z; He B
    IEEE Trans Biomed Eng; 2008 Oct; 55(10):2481-6. PubMed ID: 18838374
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anisotropic conductivity tensor imaging for transcranial direct current stimulation (tDCS) using magnetic resonance diffusion tensor imaging (MR-DTI).
    Lee MB; Kim HJ; Woo EJ; Kwon OI
    PLoS One; 2018; 13(5):e0197063. PubMed ID: 29763453
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-frequency conductivity tensor of rat brain tissues inferred from diffusion MRI.
    Sekino M; Ohsaki H; Yamaguchi-Sekino S; Iriguchi N; Ueno S
    Bioelectromagnetics; 2009 Sep; 30(6):489-99. PubMed ID: 19437459
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.