These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 33075640)
1. Sequential conditional reinforcement learning for simultaneous vertebral body detection and segmentation with modeling the spine anatomy. Zhang D; Chen B; Li S Med Image Anal; 2021 Jan; 67():101861. PubMed ID: 33075640 [TBL] [Abstract][Full Text] [Related]
2. Semi-supervised hybrid spine network for segmentation of spine MR images. Huang M; Zhou S; Chen X; Lai H; Feng Q Comput Med Imaging Graph; 2023 Jul; 107():102245. PubMed ID: 37245416 [TBL] [Abstract][Full Text] [Related]
3. Spine-GAN: Semantic segmentation of multiple spinal structures. Han Z; Wei B; Mercado A; Leung S; Li S Med Image Anal; 2018 Dec; 50():23-35. PubMed ID: 30176546 [TBL] [Abstract][Full Text] [Related]
4. Spine detection in CT and MR using iterated marginal space learning. Michael Kelm B; Wels M; Kevin Zhou S; Seifert S; Suehling M; Zheng Y; Comaniciu D Med Image Anal; 2013 Dec; 17(8):1283-92. PubMed ID: 23265800 [TBL] [Abstract][Full Text] [Related]
5. Combining convolutional neural networks and star convex cuts for fast whole spine vertebra segmentation in MRI. Rak M; Steffen J; Meyer A; Hansen C; Tönnies KD Comput Methods Programs Biomed; 2019 Aug; 177():47-56. PubMed ID: 31319960 [TBL] [Abstract][Full Text] [Related]
6. Iterative fully convolutional neural networks for automatic vertebra segmentation and identification. Lessmann N; van Ginneken B; de Jong PA; Išgum I Med Image Anal; 2019 Apr; 53():142-155. PubMed ID: 30771712 [TBL] [Abstract][Full Text] [Related]
7. Opportunistic osteoporosis screening in multi-detector CT images using deep convolutional neural networks. Fang Y; Li W; Chen X; Chen K; Kang H; Yu P; Zhang R; Liao J; Hong G; Li S Eur Radiol; 2021 Apr; 31(4):1831-1842. PubMed ID: 33001308 [TBL] [Abstract][Full Text] [Related]
8. ABCNet: A new efficient 3D dense-structure network for segmentation and analysis of body tissue composition on body-torso-wide CT images. Liu T; Pan J; Torigian DA; Xu P; Miao Q; Tong Y; Udupa JK Med Phys; 2020 Jul; 47(7):2986-2999. PubMed ID: 32170754 [TBL] [Abstract][Full Text] [Related]
9. Ultrasound Image Segmentation: A Deeply Supervised Network With Attention to Boundaries. Mishra D; Chaudhury S; Sarkar M; Soin AS IEEE Trans Biomed Eng; 2019 Jun; 66(6):1637-1648. PubMed ID: 30346279 [TBL] [Abstract][Full Text] [Related]
10. Computational techniques to segment and classify lumbar compression fractures. Adela Arpitha ; Rangarajan L Radiol Med; 2020 Jun; 125(6):551-560. PubMed ID: 32067163 [TBL] [Abstract][Full Text] [Related]
11. Automated measurement of spine indices on axial MR images for lumbar spinal stenosis diagnosis using segmentation-guided regression network. Pang C; Su Z; Lin L; Lin G; He J; Lu H; Feng Q; Pang S Med Phys; 2023 Jan; 50(1):104-116. PubMed ID: 36029008 [TBL] [Abstract][Full Text] [Related]
12. Deep-learning-based detection and segmentation of organs at risk in nasopharyngeal carcinoma computed tomographic images for radiotherapy planning. Liang S; Tang F; Huang X; Yang K; Zhong T; Hu R; Liu S; Yuan X; Zhang Y Eur Radiol; 2019 Apr; 29(4):1961-1967. PubMed ID: 30302589 [TBL] [Abstract][Full Text] [Related]
13. Pulmonary nodule segmentation with CT sample synthesis using adversarial networks. Qin Y; Zheng H; Huang X; Yang J; Zhu YM Med Phys; 2019 Mar; 46(3):1218-1229. PubMed ID: 30575046 [TBL] [Abstract][Full Text] [Related]
14. Brain Tumor Segmentation Based on Improved Convolutional Neural Network in Combination with Non-quantifiable Local Texture Feature. Deng W; Shi Q; Luo K; Yang Y; Ning N J Med Syst; 2019 Apr; 43(6):152. PubMed ID: 31016467 [TBL] [Abstract][Full Text] [Related]
15. DGMSNet: Spine segmentation for MR image by a detection-guided mixed-supervised segmentation network. Pang S; Pang C; Su Z; Lin L; Zhao L; Chen Y; Zhou Y; Lu H; Feng Q Med Image Anal; 2022 Jan; 75():102261. PubMed ID: 34794095 [TBL] [Abstract][Full Text] [Related]
16. Automatic bladder segmentation from CT images using deep CNN and 3D fully connected CRF-RNN. Xu X; Zhou F; Liu B Int J Comput Assist Radiol Surg; 2018 Jul; 13(7):967-975. PubMed ID: 29556905 [TBL] [Abstract][Full Text] [Related]
17. Postoperative glioma segmentation in CT image using deep feature fusion model guided by multi-sequence MRIs. Tang F; Liang S; Zhong T; Huang X; Deng X; Zhang Y; Zhou L Eur Radiol; 2020 Feb; 30(2):823-832. PubMed ID: 31650265 [TBL] [Abstract][Full Text] [Related]
19. Spine-GFlow: A hybrid learning framework for robust multi-tissue segmentation in lumbar MRI without manual annotation. Kuang X; Cheung JPY; Wong KK; Lam WY; Lam CH; Choy RW; Cheng CP; Wu H; Yang C; Wang K; Li Y; Zhang T Comput Med Imaging Graph; 2022 Jul; 99():102091. PubMed ID: 35803034 [TBL] [Abstract][Full Text] [Related]
20. A fully integrated computer-aided diagnosis system for digital X-ray mammograms via deep learning detection, segmentation, and classification. Al-Antari MA; Al-Masni MA; Choi MT; Han SM; Kim TS Int J Med Inform; 2018 Sep; 117():44-54. PubMed ID: 30032964 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]